首页> 外文期刊>IEEE transactions on automation science and engineering >NCSR: Negative-Connection-Aware Service Recommendation for Large Sparse Service Network
【24h】

NCSR: Negative-Connection-Aware Service Recommendation for Large Sparse Service Network

机译:NCSR:大型稀疏服务网络的负连接感知服务建议

获取原文
获取原文并翻译 | 示例

摘要

Currently, most web service recommendation studies concentrate on mining association patterns among services from historical compositions and recommending proper services based on patterns derived. However, latent negative patterns which indicate the inappropriate combinations of services, are mostly ignored. Therefore, by combining additional negative patterns with the already-exploited positive patterns in the large spares network of web services, we present a more comprehensive and accurate model for service recommendation. More specifically, we combine positive and negative composition patterns mined from service annotated tags. The extensive experiments conducted on a real-life dataset show that our method can outperform not only traditional APriori -based recommendation method but also Link Prediction-based one. The experiments on a synthetic dataset show that our method can also be effective to make recommendations in large-scale service network.
机译:当前,大多数Web服务推荐研究都集中在从历史组成部分中挖掘服务之间的关联模式,并根据派生的模式推荐适当的服务。但是,表示服务组合不当的潜在负面模式通常被忽略。因此,通过在Web服务的大型备用网络中将其他负面模式与已经开发的正面模式相结合,我们提出了一种更全面,准确的服务推荐模型。更具体地说,我们结合了从服务注释标签中提取的正面和负面构图模式。在真实数据集上进行的大量实验表明,我们的方法不仅优于传统的基于APriori的推荐方法,而且还优于基于链接预测的方法。综合数据集上的实验表明,我们的方法在大规模服务网络中也可以有效地提出建议。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号