首页> 外文期刊>IEEE transactions on automation science and engineering >Multiobjective Differential Evolution Algorithm for Solving Robotic Cell Scheduling Problem With Batch-Processing Machines
【24h】

Multiobjective Differential Evolution Algorithm for Solving Robotic Cell Scheduling Problem With Batch-Processing Machines

机译:用批处理机解决机械手机调度问题的多目标差分演进算法

获取原文
获取原文并翻译 | 示例

摘要

Robotic cell scheduling problem with batch-processing machines (RCSP-BMs) needs to determine the processing sequence and the transferring sequence simultaneously. The buffer size before and after the batch-processing machines has a big influence on the scheduling solution. A big amount of energy is always consumed by batch-processing machines. Hybrid flow shop scheduling has been proven NP-hard, and the features of the batch-processing machines in a flow shop make the hybrid flow shop scheduling more difficult. This study proposes a multiobjective differential evolution (DE) algorithm to address these issues. First, a mathematical optimization model is formulated for the RCSP-BMs to minimize makespan and energy consumption of the batch-processing machines. Second, the multiobjective DE algorithm (MODE) is developed. A green scheduling algorithm is designed to decode the individuals to balance the makespan and energy consumption. A local search method is also presented to help the searching escape from the local optimum. Finally, experiments are carried out, and the results show that the MODE can solve the robotic cell scheduling problem with batch-processing machines effectively and efficiently. Note to Practitioners-This study focuses on the robotic cell scheduling problem with batch-processing machines (RCSP-BMs) and discusses the influence of the buffer sizes and different batching methods on scheduling. In this study, we propose a green scheduling algorithm and a multiobjective differential evolution algorithm to optimize the makespan and the energy consumption of the batch-processing machines simultaneously. In future research, we will address more complicated situations, such as many-objective optimization and many-robot scheduling.
机译:具有批处理机(RCSP-BMS)的机器人单元调度问题需要同时确定处理序列和转移序列。批处理机器之前和之后的缓冲区大小对调度解决方案有很大影响。批处理机器总是消耗大量的能量。混合流量店调度已被证明是NP-Hard,流水店中的批处理机器的特点使混合流动店调度更加困难。本研究提出了一种多目标差分进化(DE)算法来解决这些问题。首先,为RCSP-BMS配制了数学优化模型,以最大限度地减少批处理机器的MAPESPAN和能量消耗。其次,开发了多目标de算法(模式)。绿色调度算法旨在解码个人以平衡Mapspan和能量消耗。还提出了本地搜索方法以帮助搜索从本地最佳逃脱。最后,进行了实验,结果表明,该模式可以有效且有效地解决批处理机器的机器人调度问题。从业者的注意事项 - 本研究专注于批处理机(RCSP-BMS)的机器人单元调度问题,并讨论缓冲大小和不同批处理方法对调度的影响。在这项研究中,我们提出了一种绿色调度算法和多目标差分演进算法,同时优化批处理机器的Mapspan和能量消耗。在未来的研究中,我们将解决更复杂的情况,例如多目标优化和多机器人调度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号