首页> 外文期刊>IEEE transactions on automation science and engineering >Context-Sensitive Modeling and Analysis of Cyber-Physical Manufacturing Systems for Anomaly Detection and Diagnosis
【24h】

Context-Sensitive Modeling and Analysis of Cyber-Physical Manufacturing Systems for Anomaly Detection and Diagnosis

机译:对异常检测和诊断的网络 - 体质制造系统的背景敏感建模与分析

获取原文
获取原文并翻译 | 示例

摘要

Cyber-physical manufacturing systems (CPMS) can be defined by the integration of control, network communication, and computing with a physical manufacturing process. In this work, we present a hybrid model of CPMS combining sensor data, context information, and expert knowledge. We used the identification of global operational states and a multimodel framework to improve anomaly detection and diagnosis. The anomaly detection is based on context-sensitive adaptive threshold limits. Root cause diagnosis is based on classification models and expert knowledge. The proposed approach was implemented using the Internet of Things (IoT) to extract data from a computer numerical control machine. Results showed that using a context-sensitive modeling strategy allowed to combine physics-based and data-driven models for residual analysis to detect an anomaly in the part, machine, or process. The identification of root cause was improved by adding context information in classification models to identify worn or broken tools and wrong material. Note to Practitioners-Anomaly detection and diagnosis of manufacturing equipment is a complex problem. Some of the challenges are complex machine dynamics and nonstationary operating conditions. This paper describes a framework for modeling manufacturing equipment using a combination of sensor data, context information, and system knowledge. The proposed modeling framework is used to improve anomaly detection for diagnostics using a context-sensitive strategy. This work aims to support more effective maintenance actions by identifying problems in the machine, part, or process. The modeling and anomaly detection strategy was used to identify anomalies in computer numerical control machines and can be extended to other equipment on the plant floor.
机译:网络物理制造系统(CPMS)可以通过与物理制造过程的控制,网络通信和计算的集成来定义。在这项工作中,我们呈现了CPMS组合传感器数据,上下文信息和专业知识的混合模型。我们利用全球运营状态和多模型框架的识别,以改善异常检测和诊断。异常检测基于上下文敏感的自适应阈值限制。根本原因诊断基于分类模型和专家知识。所提出的方法是使用物联网(物联网)实施,以从计算机数控机中提取数据。结果表明,使用上下文敏感的建模策略,使得基于物理和数据驱动模型结合残留分析以检测部分,机器或过程中的异常。通过在分类模型中添加上下文信息来改进根本原因的识别,以识别磨损或破损的工具和错误的材料。注意为从业者 - 异常检测和制造设备的诊断是一个复杂的问题。一些挑战是复杂的机器动态和非间断的操作条件。本文介绍了一种使用传感器数据,上下文信息和系统知识的组合建模制造设备的框架。建议的建模框架用于使用上下文敏感策略来改善对诊断的异常检测。这项工作旨在通过识别机器,部分或过程中的问题来支持更有效的维护操作。建模和异常检测策略用于识别计算机数控机器中的异常,并且可以扩展到厂房上的其他设备。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号