首页> 外文期刊>IEEE transactions on automation science and engineering >A Stacked Autoencoder With Sparse Bayesian Regression for End-Point Prediction Problems in Steelmaking Process
【24h】

A Stacked Autoencoder With Sparse Bayesian Regression for End-Point Prediction Problems in Steelmaking Process

机译:一种堆叠的AutoEncoder,具有稀疏的贝叶斯回归用于炼钢过程中的终点预测问题

获取原文
获取原文并翻译 | 示例

摘要

The steelmaking process in the iron and steel industry involves complicated physicochemical reactions. The main aim of steelmaking is to adjust the quality of molten steel. During the steel-tapping process, the temperature and carbon content are the most essential quality indices for end-point prediction. This article presents a novel machine learning framework for the end-point prediction problems in the smelting process. Considering the importance of data representation in modeling, the original data are inputted to a stacked autoencoder (SAE) to extract the essential features in an unsupervised manner. The top layer is then designed as a sparse Bayesian regression (SBR) layer to obtain the predicted mean values and error bars that measure the uncertainty in the prediction. To improve the generalization ability of the prediction model, an intelligent optimization algorithm based on improved differential evolution (DE) is used to optimize the hyperparameters of the model. The main advantage of this model is that the underlying characteristics of the samples can be learned automatically layer by layer, instead of designing them manually. Finally, the effectiveness of the proposed method is verified using real data collected from two steel plants. The experimental results show that the proposed model gives a more precise prediction than other existing models and can provide error bars for the end-point prediction. Note to Practitioners-The end-point prediction is critical to the quality of products produced in the iron and steel production process. Because of the complexity of the physiochemical reactions during smelting, it is difficult to build mechanism models for the complex environment. Generally, expert knowledge and experience are needed for real production. The motivation behind this article was to establish a data-driven model through machine learning methods to solve end-point prediction problems. First, a stacked autoencoder (SAE) was used to extract the essential information from the original data. Second, sparse Bayesian regression (SBR) was applied to the top layer. Thus, the predicted mean values and error bars could be obtained to improve the robustness of the prediction model. Furthermore, an improved differential evolution (DE) algorithm was designed to adaptively optimize the hyperparameters of the model. In the experiments, the proposed method was applied to two real steelmaking production processes. The results verify the effectiveness of the proposed model. This article can be extended to other processes such as continuous casting and reheating furnace. The model can also be generalized for other practical industries to improve the product quality and enable safer production.
机译:钢铁工业中的炼钢工艺涉及复杂的物理化学反应。钢制造的主要目的是调整钢水质量。在钢攻丝过程中,温度和碳含量是终点预测的最重要的质量指标。本文为冶炼过程中的终点预测问题提供了一种新颖的机器学习框架。考虑到数据表示在建模中的重要性,原始数据被输入到堆叠的AutoEncoder(SAE)以以无监督的方式提取基本特征。然后将顶层设计为稀疏贝叶斯回归(SBR)层,以获得测量预测中不确定性的预测平均值和误差条。为了提高预测模型的泛化能力,使用基于改进的差分演进(DE)的智能优化算法来优化模型的超参数。该模型的主要优点是样品的基本特征可以通过层自动学习,而不是手动设计它们。最后,使用从两个钢铁厂收集的真实数据来验证所提出的方法的有效性。实验结果表明,该模型提供比其他现有模型更精确的预测,并且可以为终点预测提供误差条。向从业者 - 终点预测对于钢铁生产过程中生产的产品质量至关重要。由于在冶炼过程中物理化学反应的复杂性,因此难以构建复杂环境的机制模型。通常,实际生产需要专业知识和经验。本文背后的动机是通过机器学习方法建立数据驱动模型来解决终点预测问题。首先,使用堆叠的AutoEncoder(SAE)从原始数据中提取基本信息。其次,将稀疏的贝叶斯回归(SBR)施加到顶层。因此,可以获得预测的平均值和误差条以改善预测模型的鲁棒性。此外,改进的差分演进(DE)算法被设计为自适应地优化模型的超顺计。在实验中,将该方法应用于两个真正的炼钢生产过程。结果验证了所提出的模型的有效性。本文可以扩展到其他过程,如连续铸造和再加热炉。该模型也可以推广其他实际行业,以提高产品质量,使得能够更安全。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号