首页> 外文期刊>IEEE transactions on automation science and engineering >Coarse Alignment for Model Fitting of Point Clouds Using a Curvature-Based Descriptor
【24h】

Coarse Alignment for Model Fitting of Point Clouds Using a Curvature-Based Descriptor

机译:使用基于曲率的描述符的点云模型拟合的粗校准

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a method for coarse alignment of point clouds by introducing a new descriptor based on the local curvature. The method is developed for model fitting a CAD model for use in robotic assembly. The method is based on selecting keypoints depending on shape factors calculated from the local covariance matrix of the surface. A descriptor is then calculated for each keypoint by fitting two spheres that describe the curvature of the surface. The spheres are calculated using conformal geometric algebra, which gives a convenient and efficient description of the geometry. The keypoint descriptors for the model and the observed point cloud are then compared to estimate the corresponding keypoints, which are used to calculate the displacement. The method is tested in several experiments. One experiment is for robotic assembly, where objects are placed on a table and their position and orientation is estimated using a 3-D CAD model.Note to Practitioners-3-D cameras can be used in robotic assembly for recognizing objects, and for determining the position and orientation of parts to be assembled. In such applications, 3-D CAD models will be available for the objects, and point clouds representing each object can be generated for comparison with the observed point clouds from the 3-D camera. It is not straightforward to use existing descriptors in this paper, as the point cloud from the CAD model and the observed point cloud may differ due to different viewpoints and potential occlusions. The method proposed in this paper is intended to be easy to apply to industrial assembly problems where there is a need for a robust estimation of the displacement of an object, either as a coarse estimate for use in grasping or as an initial guess to use in fine registration for demanding assembly operations with close tolerances. The method exploits the curvature of the point clouds to accurately describe the surrounding surface of each point. This method serves as a basis for future industrial implementations.
机译:本文通过基于局部曲率引入新描述符来介绍点云的粗地对准的方法。该方法是为模型装配CAD模型开发的,用于机器人组件。该方法基于根据来自表面的局部协方差矩阵计算的形状因子来选择关键点。然后通过拟合描述表面曲率的两个球形来计算每个关键点的描述符。球形使用保形几何代数计算,这给出了几何形状的方便和有效地描述。然后比较模型和观察点云的关键点描述符以估计用于计算位移的相应关键点。该方法在几个实验中进行了测试。一个实验是用于机器人组件,其中物体放置在表上,并且使用3-D CAD模型估计它们的位置和取向。注意到从业者-3-D相机可用于机器人组件,用于识别物体,并用于确定待组装部件的位置和定向。在这种应用中,3-D CAD模型将可用于对象,并且可以生成表示每个对象的点云以与来自3-D相机的观察点云进行比较。在本文中使用现有描述符并不简单,因为来自CAD模型的点云和观察到的点云可能由于不同的观点和潜在的闭塞而不同。本文提出的方法旨在易于适用于工业组装问题,其中需要鲁棒估计对象的位移,作为粗略估计,用于掌握或初始猜测使用精细注册,用于苛刻的容差的装配操作。该方法利用点云的曲率来准确地描述每个点的周围表面。该方法是未来工业实施的基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号