首页> 外文期刊>IEEE transactions on automation science and engineering >Spatial Task Scheduling for Cost Minimization in Distributed Green Cloud Data Centers
【24h】

Spatial Task Scheduling for Cost Minimization in Distributed Green Cloud Data Centers

机译:分布式绿云数据中心成本最小化的空间任务调度

获取原文
获取原文并翻译 | 示例

摘要

The infrastructure resources in distributed green cloud data centers (DGCDCs) are shared by multiple heterogeneous applications to provide flexible services to global users in a high-performance and low-cost way. It is highly challenging to minimize the total cost of a DGCDC provider in a market, where bandwidth prices of Internet service providers (ISPs), electricity prices, and the availability of renewable green energy all vary with geographical locations. Unlike existing studies, this paper proposes a spatial task scheduling and resource optimization (STSRO) method to minimize the total cost of their provider by cost-effectively scheduling all arriving tasks of heterogeneous applications to meet tasks' delay-bound constraints. STSRO well exploits spatial diversity in DGCDCs. In each time slot, the cost minimization problem for DGCDCs is formulated as a constrained optimization one and solved by the proposed simulated annealing-based bat algorithm (SBA). Trace-driven experiments demonstrate that STSRO achieves lower total cost and higher throughput than two typical scheduling methods.Note to Practitioners-This paper investigates the cost minimization problem for DGCDCs while meeting delay-bound constraints for all arriving tasks. Previous task scheduling methods do not jointly investigate the spatial diversity in bandwidth prices of ISPs, electricity prices, and the availability of renewable green energy. Therefore, they fail to cost-effectively schedule all arriving tasks of heterogeneous applications during their delay-bound constraints. In this paper, a new method that overcomes the shortcomings of the existing methods is proposed. It is obtained by using the proposed SBA that solves a constrained optimization problem. Simulation results demonstrate that compared with two typical scheduling methods, it increases the throughput and decreases the cost. It can be readily implemented and integrated into real-world industrial DGCDCs. The future work needs to investigate the indeterminacy of renewable energy and the uncertainty in arriving tasks with rough deep neural network approaches on STSRO.
机译:分布式绿色云数据中心(DGCDC)的基础设施资源由多个异构应用共享,以高性能和低成本的方式为全球用户提供灵活的服务。最大限度地挑战,最大限度地减少市场在市场中的DGCDC提供商的总成本,互联网服务提供商(ISP),电价和可再生绿色能源的可用性都会因地理位置而变化。与现有研究不同,本文提出了一种空间任务调度和资源优化(STSRO)方法,通过成本有效地调度异构应用程序的所有到达任务来最小化其提供商的总成本,以满足任务的延迟约束。 Stsro好利用DGCDCS的空间多样性。在每个时隙中,将DGCDCS的成本最小化问题称为约束优化α并由所提出的基于模拟的基于退火的BAT算法(SBA)解决。追踪实验表明,STSRO比两个典型的调度方法达到较低的总成本和更高的吞吐量。注意到从业者 - 本文调查了DGCDCS的成本最小化问题,同时满足所有到达任务的延迟约束。以前的任务调度方法没有联合调查ISP,电价和可再生绿色能源的可用性的带宽价格。因此,它们未能成本有效地安排在其延迟约束期间异构应用的所有到达任务。本文提出了一种克服现有方法缺点的新方法。通过使用所提出的SBA来获得解决受限制的优化问题。仿真结果表明,与两个典型的调度方法相比,它增加了吞吐量并降低了成本。它可以很容易地实施并集成到现实世界的工业DGCDC中。未来的工作需要调查可再生能源的不确定和在STSRO粗糙的深层神经网络方法到达的抵达任务中的不确定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号