首页> 外文期刊>IEEE transactions on automation science and engineering >Spatial Task Scheduling for Cost Minimization in Distributed Green Cloud Data Centers
【24h】

Spatial Task Scheduling for Cost Minimization in Distributed Green Cloud Data Centers

机译:分布式绿色云数据中心中用于成本最小化的空间任务调度

获取原文
获取原文并翻译 | 示例

摘要

The infrastructure resources in distributed green cloud data centers (DGCDCs) are shared by multiple heterogeneous applications to provide flexible services to global users in a high-performance and low-cost way. It is highly challenging to minimize the total cost of a DGCDC provider in a market, where bandwidth prices of Internet service providers (ISPs), electricity prices, and the availability of renewable green energy all vary with geographical locations. Unlike existing studies, this paper proposes a spatial task scheduling and resource optimization (STSRO) method to minimize the total cost of their provider by cost-effectively scheduling all arriving tasks of heterogeneous applications to meet tasks' delay-bound constraints. STSRO well exploits spatial diversity in DGCDCs. In each time slot, the cost minimization problem for DGCDCs is formulated as a constrained optimization one and solved by the proposed simulated annealing-based bat algorithm (SBA). Trace-driven experiments demonstrate that STSRO achieves lower total cost and higher throughput than two typical scheduling methods.Note to Practitioners-This paper investigates the cost minimization problem for DGCDCs while meeting delay-bound constraints for all arriving tasks. Previous task scheduling methods do not jointly investigate the spatial diversity in bandwidth prices of ISPs, electricity prices, and the availability of renewable green energy. Therefore, they fail to cost-effectively schedule all arriving tasks of heterogeneous applications during their delay-bound constraints. In this paper, a new method that overcomes the shortcomings of the existing methods is proposed. It is obtained by using the proposed SBA that solves a constrained optimization problem. Simulation results demonstrate that compared with two typical scheduling methods, it increases the throughput and decreases the cost. It can be readily implemented and integrated into real-world industrial DGCDCs. The future work needs to investigate the indeterminacy of renewable energy and the uncertainty in arriving tasks with rough deep neural network approaches on STSRO.
机译:多个异构应用程序共享分布式绿色云数据中心(DGCDC)中的基础结构资源,从而以高性能和低成本方式为全球用户提供灵活的服务。最小化DGCDC提供者在市场上的总成本是极富挑战性的,在该市场中,互联网服务提供商(ISP)的带宽价格,电价和可再生绿色能源的可用性都随地理位置而变化。与现有研究不同,本文提出了一种空间任务调度和资源优化(STSRO)方法,通过经济高效地调度异构应用程序的所有到达任务来满足任务的延迟约束,从而最小化其提供者的总成本。 STSRO很好地利用了DGCDC中的空间多样性。在每个时隙中,将DGCDC的成本最小化问题表述为约束优化之一,并通过提出的基于模拟退火的蝙蝠算法(SBA)加以解决。跟踪驱动的实验表明,STSRO比两种典型的调度方法具有更低的总成本和更高的吞吐量。执业者注意—本文研究了DGCDC的成本最小化问题,同时满足了所有到达任务的延迟约束。以前的任务调度方法并未共同调查ISP的带宽价格,电价和可再生绿色能源的可用性的空间多样性。因此,它们无法在延迟约束范围内经济高效地调度异构应用程序的所有到达任务。本文提出了一种克服现有方法缺点的新方法。它是通过使用提出的SBA解决约束优化问题而获得的。仿真结果表明,与两种典型的调度方法相比,它可以提高吞吐量并降低成本。它可以轻松实现并集成到实际的工业DGCDC中。未来的工作需要使用STSRO上的粗糙深度神经网络方法来研究可再生能源的不确定性和到达任务的不确定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号