首页> 外文期刊>IEEE transactions on automation science and engineering >Revenue and Energy Cost-Optimized Biobjective Task Scheduling for Green Cloud Data Centers
【24h】

Revenue and Energy Cost-Optimized Biobjective Task Scheduling for Green Cloud Data Centers

机译:绿云数据中心的收入和能源优化的生物学任务调度

获取原文
获取原文并翻译 | 示例

摘要

The significant growth in the number and types of tasks of heterogeneous applications in green cloud data centers (GCDCs) dramatically increases their providers' revenue from users as well as energy consumption. It is a big challenge to maximize such revenue, while minimizing energy cost in a market where prices of electricity, availability of renewable power generation, and behind-the-meter renewable generation contract models differ among the geographical sites of the GCDCs. A multiobjective optimization method that investigates such spatial differences in the GCDCs is for the first time proposed to trade off such two objectives by cost-effectively executing all tasks while meeting their delay constraints. In each time slot, a constrained biobjective optimization problem is formulated and solved by an improved multiobjective evolutionary algorithm based on decomposition. Realistic data-based simulations prove that the proposed method achieves a larger total profit in faster convergence speed than the two state-of-the-art algorithms. Note to Practitioners-This article considers the tradeoff between profit maximization and energy cost minimization for the green cloud data center (GCDC) providers while meeting the delay constraints of all tasks. Current task-scheduling methods fail to take the advantage of spatial variations in many factors, e.g., prices of electricity and availability of renewable power generation at geographically distributed GCDC locations. As a result, they fail to execute all tasks of heterogeneous applications within their delay bounds in a high-revenue and low-energy-cost manner. In this article, a multiobjective optimization method that addresses the disadvantages of the existing methods is proposed. It is realized by a proposed intelligent optimization algorithm. Simulations demonstrate that in comparison with the two state-of-the-art scheduling algorithms, the proposed one increases the profit and reduces the convergence time. It can be readily implemented and integrated into actual industrial GCDCs.
机译:绿色云数据中心(GCDC)中异构应用的数量和类型的数量和类型的显着增长显着提高了他们的提供者的收入以及能源消耗。最大化此类收入是一个很大的挑战,同时最大限度地减少在市场价格的市场中的能源成本,可再生能源的可用性和米后的可再生生成合同模型在GCDC的地理位置中不同。一种多目标优化方法,调查GCDC中的这种空间差异是第一次提出通过成本有效地执行所有任务来缩减这两个目标的第一次,同时遇到它们的延迟约束。在每个时隙中,通过基于分解的改进的多目标进化算法制定和解决了受约束的生物回形优化问题。基于现实的基于数据的模拟证明,该方法比两种最先进的算法更快地实现了更大的收敛速度的总利润。从业者的说明 - 本文认为绿云数据中心(GCDC)提供商的利润最大化和能源成本最小化之间的权衡,同时满足所有任务的延迟约束。目前的任务调度方法未能采取许多因素的空间变化的优势,例如,地理分布在地理分布的GCDC位置处的可再生能力的电力和可用性的价格。结果,它们未能以高收入和低能量成本的方式在其延迟范围内执行异构应用的所有任务。在本文中,提出了一种解决现有方法缺点的多目标优化方法。它是通过提出的智能优化算法实现的。仿真表明,与两个最先进的调度算法相比,所提出的一个提高利润并降低收敛时间。它可以很容易地实施并集成到实际的工业GCDC中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号