Interactive-Control-Model for Human–Computer Interactive System Based on Petri Nets


获取原文并翻译 | 示例


In human-computer interactive systems (HCISs), there are not only autonomous robots completely controlled by computers but also semiautonomous robots requiring human control. To avoid the errors in a procedure of interaction, a control model is needed. This paper proposes a systematic strategy with specific algorithms to construct an interactive-control-model based on Petri nets owing to their ability to describe concurrence and other system features. Instead of cumbersome iterations of deadlock detection in the existing studies, this paper introduces the concept of implicit constraints and the related implicit-conflict-marking-search algorithm to excavate them. In the algorithm, only the status of a single robot is needed to analyze the system instead of the status of all system components, which is an important innovation in this paper since this can well help one resolve the state explosion issue. Several examples are provided to show the feasibility of the proposed method. The proposed idea in this paper can be readily applied to practical HCISs.Note to Practitioners-This paper is motivated by the problem of avoiding unexpected situations that may cause industrial accidents in mobile robot systems. Practitioners need to have a control model of the system in order to solve this problem. Existing approaches usually find constraints of a mobile robot system while modeling, which increases the number of iterations. This paper suggests a new approach to find all constraints and then builds a control model for mobile robot systems systematically. With a control model, practitioners can obtain allowed or not allowed operations so as to avoid unexpected situations. Experimental results show the effectiveness of this approach.



  • 外文文献
  • 中文文献
  • 专利
  • 写作辅导
  • 期刊发表


京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号