首页> 外文期刊>Automation in construction >In-situ concrete slump test incorporating deep learning and stereo vision
【24h】

In-situ concrete slump test incorporating deep learning and stereo vision

机译:原位混凝土坍落度测试包含深入学习和立体视野

获取原文
获取原文并翻译 | 示例

摘要

Measuring the concrete slump is necessary for ensuring the quality of concrete before its use. However, manual slump measurements have limited accuracy and are time-consuming and labor-intensive. Herein, an approach based on deep learning and stereo vision techniques is proposed to effectively improve the determination of concrete slump in outdoor environments. Input images obtained from a stereo camera system were classified into three slump cases via deep learning. The actual slumps were then calculated using depth maps obtained via stereo vision. The results were analyzed for the correlations between camera mounting heights and the distance between the cameras to identify the optimal settings for an onsite working system. A baseline of 70 mm and working height of 1.7-1.9 m yielded optimal results with errors = 2.05%. Additionally, the mask-region-based volumetric results exhibited errors of 8.9% relative to ground truth, thereby validating the reliability of the proposed approach.
机译:测量混凝土坍落度是确保在使用前确保混凝土的质量所必需的。然而,手动坍落度测量的精度有限,并且是耗时和劳动密集型的。这里,提出了一种基于深度学习和立体视觉技术的方法,以有效地改善了室外环境中混凝土坍落度的测定。通过深度学习将从立体声相机系统获得的输入图像分为三个坍落度案例。然后使用通过立体视觉获得的深度图计算实际的坍落度。分析了相机安装高度与摄像机之间的距离之间的相关性的结果,以识别现场工作系统的最佳设置。基线为70毫米,工作高度为1.7-1.9米,误差<= 2.05%产生了最佳结果。另外,基于掩模区域的体积结果相对于地面真理表现出<8.9%的误差,从而验证了所提出的方法的可靠性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号