首页> 外文期刊>IEEE Transactions on Automatic Control >Recursive least-squares identification algorithms with incomplete excitation: convergence analysis and application to adaptive control
【24h】

Recursive least-squares identification algorithms with incomplete excitation: convergence analysis and application to adaptive control

机译:不完全激励的递推最小二乘辨识算法:收敛性分析及在自适应控制中的应用

获取原文
获取原文并翻译 | 示例

摘要

The convergence properties of a fairly general class of adaptive recursive least-squares algorithms are studied under the assumption that the data generation mechanism is deterministic and time invariant. First, the (open-loop) identification case is considered. By a suitable notion of excitation subspace, the convergence analysis of the identification algorithm is carried out with no persistent excitation hypothesis, i.e. it is proven that the projection of the parameter error on the excitation subspace tends to zero, while the orthogonal component of the error remains bounded. The convergence of an adaptive control scheme based on the minimum variance control law is then dealt with. It is shown that under the standard minimum-phase assumption, the tracking error converges to zero whenever the reference signal is bounded. Furthermore, the control variable turns out to be bounded.
机译:在数据生成机制是确定性且时间不变的假设下,研究了相当通用的自适应递归最小二乘算法的收敛性。首先,考虑(开环)识别情况。通过适当的激励子空间概念,在没有持久性激励假设的情况下进行了识别算法的收敛分析,即证明了参数误差在激励子空间上的投影趋于零,而误差的正交分量仍然有界。然后处理基于最小方差控制律的自适应控制方案的收敛性。结果表明,在标准最小相位假设下,只要参考信号有界,跟踪误差就会收敛为零。此外,该控制变量被证明是有界的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号