首页> 外文期刊>IEEE Transactions on Automatic Control >Rational matrix GCDs and the design of squaring-down compensators-a state-space theory
【24h】

Rational matrix GCDs and the design of squaring-down compensators-a state-space theory

机译:有理矩阵GCD和Squaring-down补偿器的设计-状态空间理论

获取原文
获取原文并翻译 | 示例

摘要

A state-space construction for rational matrix greatest common divisors (GCDs) of rational transfer matrices is given. It is shown how the GCD results can be used to solve the problem of designing stable minimum-phase squaring-down compensators for multi-variable plants. One application is a direct state-space construction for such compensators and a state-space solution to 'fat-plant' H-infinity control problems. The results make use of the concepts of strongly observable systems and maximally observable systems and build upon the concepts introduced in the state-space GCD extraction results for polynomial matrices of L.M. Silverman and P. Van Dooren (1979).
机译:给出了有理传递矩阵的有理矩阵最大公约数(GCD)的状态空间构造。它显示了如何将GCD结果用于解决为多变量植物设计稳定的最小相位平方下降补偿器的问题。一种应用是针对此类补偿器的直接状态空间构造,以及一种针对“脂肪工厂” H无限控制问题的状态空间解决方案。结果利用了强可观测系统和最大可观测系统的概念,并以L.M. Silverman和P. Van Dooren(1979)的多项式矩阵在状态空间GCD提取结果中引入的概念为基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号