首页> 外文期刊>IEEE Transactions on Automatic Control >Properties of the entire set of Hurwitz polynomials and stabilityanalysis of polynomial families
【24h】

Properties of the entire set of Hurwitz polynomials and stabilityanalysis of polynomial families

机译:整个Hurwitz多项式的性质和多项式族的稳定性分析

获取原文
获取原文并翻译 | 示例

摘要

It is proved in this paper that all Hurwitz polynomials of order not less than n form two simply connected Borel cones in the polynomial parameter space. Based on this result, edge theorems for Hurwitz stability of general polyhedrons of polynomials and boundary theorems for Hurwitz stability of compact sets of polynomials are obtained. Both cases of families of polynomials with dependent and independent coefficients are considered. Different from the previous ones, our edge theorems and boundary theorems are applicable to both monic and nonmonic polynomial families and do not require the convexity or the connectivity of the set of polynomials. Moreover, our boundary theorem for families of polynomials with dependent coefficients does not require the coefficient dependency relation to be affine
机译:本文证明,所有不小于n阶的Hurwitz多项式在多项式参数空间中形成两个简单连接的Borel锥。基于该结果,获得了多项式的一般多面体的Hurwitz稳定性的边定理和多项式紧集的Hurwitz稳定性的边界定理。考虑了具有相关系数和独立系数的多项式族的两种情况。与以前的定理不同,我们的边定理和边界定理适用于单项和非单项多项式族,不需要多项式集的凸性或连通性。此外,我们的具有相关系数的多项式族的边界定理不要求系数相关关系是仿射的

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号