首页> 外文期刊>IEEE Transactions on Automatic Control >A computationally efficient Lyapunov-based scheduling procedure forcontrol of nonlinear systems with stability guarantees
【24h】

A computationally efficient Lyapunov-based scheduling procedure forcontrol of nonlinear systems with stability guarantees

机译:一种基于Lyapunov的高效计算调度程序,用于控制具有稳定性的非线性系统

获取原文
获取原文并翻译 | 示例

摘要

We propose an alternative to gain scheduling for stabilization of nonlinear systems. For a useful class of nonlinear systems, the characterization of a region of stability based on a control Lyapunov function is computationally tractable, in the sense that computation times vary polynomially with the state dimension for a fixed number of scheduling variables. Using this fact, we develop a procedure to expand the region of stability by constructing control Lyapunov functions to various trim points of the system. A Lyapunov-based control synthesis algorithm is used to construct a control law that guarantees closed-loop stability for initial conditions in the expanded region of state space. This control asymptotically recovers the optimal stability margin in the sense of a Lyapunov derivative, which in turn can be seen as a performance measure. Robustness to bounded disturbances and stabilization under bounded control are easily incorporated into this framework. In the worst case, the computational complexity of the analysis problem that develops in the new method is increased by an exponential in the disturbance dimension. Similarly, we can handle control constraints with an increase in computational complexity of no more than an exponential in the control dimension. We demonstrate the new control design procedure on an example
机译:我们提出了用于非线性系统稳定的增益调度方法。对于一类有用的非线性系统,在一定数量的调度变量的基础上,计算时间随状态维呈多项式变化,这是基于控制Lyapunov函数对稳定区域进行表征的方法。利用这一事实,我们开发了一种通过将控制Lyapunov函数构造到系统的各个调整点来扩展稳定性区域的程序。基于李雅普诺夫的控制综合算法用于构造控制律,该律可保证状态空间扩展区域中初始条件的闭环稳定性。在Lyapunov导数的意义上,这种控制渐近地恢复了最佳的稳定性裕度,而后者又可以看作是一种性能指标。容易将有限干扰的鲁棒性和有限控制下的稳定性纳入该框架。在最坏的情况下,新方法中产生的分析问题的计算复杂度会因扰动维数成指数增长而增加。类似地,我们可以处理控制约束,并且计算复杂度的增加不超过控制维度的指数。我们以一个例子演示新的控件设计程序

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号