首页> 外文期刊>IEEE Transactions on Automatic Control >An Algorithm for Sampling Subsets of H{sub}∞ With Applications to Risk-Adjusted Performance Analysis and Model (In)Validation
【24h】

An Algorithm for Sampling Subsets of H{sub}∞ With Applications to Risk-Adjusted Performance Analysis and Model (In)Validation

机译:H {sub}∞子集采样算法及其在风险调整后的绩效分析和模型(In)验证中的应用

获取原文
获取原文并翻译 | 示例

摘要

In spite of their potential to reduce computational complexity, the use of probabilistic methods in robust control has been mostly limited to parametric uncertainty, since the problem of sampling causal bounded operators is largely open. In this note, we take steps toward removing this limitation by proposing a computationally efficient algorithm aimed at uniformly sampling suitably chosen subsets of H{sub}∞. As we show in the note, samples taken from these sets can be used to carry out model (in)validation and robust performance analysis in the presence of structured dynamic linear time-invariant uncertainty, problems known to be NP-hard in the number of uncertainty blocks.
机译:尽管它们有可能减少计算复杂性,但由于采样因果有界算子的问题在很大程度上尚未解决,因此在鲁棒控制中使用概率方法大多仅限于参数不确定性。在本说明中,我们通过提出一种旨在对H {sub}∞的适当选择的子集进行统一采样的计算有效算法来朝着消除此限制的方向迈出步骤。正如我们在注解中所示,在存在结构化动态线性时不变不确定性的情况下,从这些集合中获取的样本可用于执行模型(无效)验证和鲁棒的性能分析,已知问题是NP-hard的数量不确定性块。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号