首页> 外文期刊>Automatic Control, IEEE Transactions on >Polytopic Approximation of Explicit Model Predictive Controllers
【24h】

Polytopic Approximation of Explicit Model Predictive Controllers

机译:显式模型预测控制器的多边形逼近

获取原文
获取原文并翻译 | 示例

摘要

A model predictive control law (MPC) is given by the solution to a parametric optimization problem that can be pre-computed offline, which provides an explicit map from state to input that can be rapidly evaluated online. However, the primary limitations of these optimal ‘explicit solutions’ are that they are applicable to only a restricted set of systems and that the complexity can grow quickly with problem size. In this paper we compute approximate explicit control laws that trade-off complexity against approximation error for MPC controllers that give rise to convex parametric optimization problems.
机译:解决方案给出了模型预测控制定律(MPC),该问题可以离线进行预先计算,从而提供了从状态到输入的明确映射,可以在线快速评估。但是,这些最佳“显式解决方案”的主要局限性在于它们仅适用于一组受限的系统,并且复杂性会随着问题的大小而迅速增加。在本文中,我们为MPC控制器计算近似显式控制定律,以权衡复杂性与近似误差之间的关系,从而引起凸参数优化问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号