首页> 外文期刊>Automatic Control, IEEE Transactions on >Approximation and Monotonicity of the Maximal Invariant Ellipsoid for Discrete-Time Systems by Bounded Controls
【24h】

Approximation and Monotonicity of the Maximal Invariant Ellipsoid for Discrete-Time Systems by Bounded Controls

机译:离散系统有界控制的最大不变椭球的逼近和单调性

获取原文

摘要

An analytic approximation of the maximal invariant ellipsoid for a discrete-time linear system with bounded controls is derived. The approximation is expressed explicitly in terms of the coefficient matrices of the system and the positive definite matrix that represents the shape of the invariant ellipsoid. It is shown that this approximation is very close to the exact maximal invariant ellipsoid obtained by solving either an LMI-based optimization problem or a nonlinear algebraic equation. Furthermore, the necessary and sufficient condition for such an approximation to be equal to the exact maximal invariant ellipsoid is established. On the other hand, the monotonicity of the maximal invariant ellipsoid resulting from the ¿minimal energy control with guaranteed convergence rate¿ problem is established that shows a trade-off between increasing the size of the invariant ellipsoid and increasing the convergence rate of the closed-loop system under a bounded control. Two illustrative examples demonstrate of the effectiveness of the results.
机译:推导了具有约束控制的离散时间线性系统的最大不变椭球的解析近似。根据系统的系数矩阵和表示不变椭球形状的正定矩阵明确表示近似值。结果表明,该近似值非常接近通过求解基于LMI的优化问题或非线性代数方程而获得的精确的最大不变椭球。此外,建立了使这种近似等于确切的最大不变椭圆体的必要和充分条件。另一方面,建立了最大的不变椭球体的单调性,该最大的椭球体是由ƒƒÂ¢最小能量控制和保证的收敛速率¢问题导致的,它显示了增加尺寸之间的权衡不变椭圆体的有限元解,增加了有界控制下闭环系统的收敛速度。两个说明性例子说明了结果的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号