首页> 外文期刊>Automatic Control, IEEE Transactions on >Computational Complexity Certification for Real-Time MPC With Input Constraints Based on the Fast Gradient Method
【24h】

Computational Complexity Certification for Real-Time MPC With Input Constraints Based on the Fast Gradient Method

机译:基于快速梯度法的具有输入约束的实时MPC计算复杂度认证

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes to use Nesterov's fast gradient method for the solution of linear quadratic model predictive control (MPC) problems with input constraints. The main focus is on the method's a priori computational complexity certification which consists of deriving lower iteration bounds such that a solution of pre-specified suboptimality is obtained for any possible state of the system. We investigate cold- and warm-starting strategies and provide an easily computable lower iteration bound for cold-starting and an asymptotic characterization of the bounds for warm-starting. Moreover, we characterize the set of MPC problems for which small iteration bounds and thus short solution times are expected. The theoretical findings and the practical relevance of the obtained lower iteration bounds are underpinned by various numerical examples and compared to certification results for a primal-dual interior point method.
机译:本文建议使用Nesterov的快速梯度法来解决带有输入约束的线性二次模型预测控制(MPC)问题。主要重点是该方法的先验计算复杂性证明,该证明包括得出较低的迭代边界,以便为系统的任何可能状态获得预先指定的次优解决方案。我们研究了冷启动和热启动策略,并为冷启动提供了易于计算的较低迭代边界,并为热启动提供了边界的渐近表征。此外,我们描述了一组MPC问题,这些问题的迭代边界较小,因此求解时间较短。理论上的发现和所获得的较低迭代边界的实际相关性通过各种数值示例得到了支持,并与原始-双内点法的认证结果进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号