首页> 外文期刊>IEEE Transactions on Automatic Control >Distributed Constrained Optimization by Consensus-Based Primal-Dual Perturbation Method
【24h】

Distributed Constrained Optimization by Consensus-Based Primal-Dual Perturbation Method

机译:基于共识的原始对偶摄动法的分布式约束优化

获取原文
获取原文并翻译 | 示例

摘要

Various distributed optimization methods have been developed for solving problems which have simple local constraint sets and whose objective function is the sum of local cost functions of distributed agents in a network. Motivated by emerging applications in smart grid and distributed sparse regression, this paper studies distributed optimization methods for solving general problems which have a coupled global cost function and have inequality constraints. We consider a network scenario where each agent has no global knowledge and can access only its local mapping and constraint functions. To solve this problem in a distributed manner, we propose a consensus-based distributed primal-dual perturbation (PDP) algorithm. In the algorithm, agents employ the average consensus technique to estimate the global cost and constraint functions via exchanging messages with neighbors, and meanwhile use a local primal-dual perturbed subgradient method to approach a global optimum. The proposed PDP method not only can handle smooth inequality constraints but also non-smooth constraints such as some sparsity promoting constraints arising in sparse optimization. We prove that the proposed PDP algorithm converges to an optimal primal-dual solution of the original problem, under standard problem and network assumptions. Numerical results illustrating the performance of the proposed algorithm for a distributed demand response control problem in smart grid are also presented.
机译:已经开发了各种分布式优化方法来解决具有简单局部约束集并且目标函数是网络中分布式代理的局部成本函数之和的问题。受智能电网中新兴应用和分布式稀疏回归的推动,本文研究了用于解决一般问题的分布式优化方法,这些问题具有耦合的全局成本函数和不平等约束。我们考虑一个网络场景,其中每个代理都不具有全局知识,并且只能访问其本地映射和约束功能。为了以分布式的方式解决这个问题,我们提出了一种基于共识的分布式原始对偶扰动(PDP)算法。在该算法中,智能体采用平均共识技术通过与邻居交换消息来估计全局成本和约束函数,同时使用局部原始对偶扰动次梯度方法来逼近全局最优。提出的PDP方法不仅可以处理平滑的不等式约束,而且还可以处理非平滑的约束,例如稀疏优化中出现的一些稀疏性促进约束。我们证明了在标准问题和网络假设下,提出的PDP算法收敛于原始问题的最优原始对偶解。数值结果说明了所提出算法在智能电网中的分布式需求响应控制问题的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号