首页> 外文期刊>Automatic Control, IEEE Transactions on >Optimal Filter Approximations in Conditionally Gaussian Pairwise Markov Switching Models
【24h】

Optimal Filter Approximations in Conditionally Gaussian Pairwise Markov Switching Models

机译:条件高斯成对马尔可夫切换模型中的最佳滤波器逼近

获取原文
获取原文并翻译 | 示例

摘要

We consider a general triplet Markov Gaussian linear system , where is an hidden continuous random sequence, is an hidden discrete Markov chain, is an observed continuous random sequence. When the triplet is a classical “Conditionally Gaussian Linear State-Space Model” (CGLSSM) , the mean square error optimal filter is not workable with a reasonable complexity and different approximate methods, e.g. based on particle filters, are used. We propose two contributions. The first one is to extend the CGLSSM to a new, more general model, called the “Conditionally Gaussian Pairwise Markov Switching Model” (CGPMSM), in which is not necessarily Markov given . The second contribution is to consider a particular case of CGPMSM in which is Markov and in which an exact filter, optimal in the sense of mean square error, can be performed with linear-time complexity. Some experiments show that the proposed method and the suited particle filter have comparable efficiency, while the second one is much faster.
机译:我们考虑一个一般的三重态马尔可夫高斯线性系统,其中是一个隐藏的连续随机序列,是一个隐藏的离散马尔可夫链,是一个观察到的连续随机序列。当三元组是经典的“有条件的高斯线性状态空间模型”(CGLSSM)时,均方误差最优滤波器无法以合理的复杂度和不同的近似方法(例如,基于粒子过滤器。我们提出了两个建议。第一个是将CGLSSM扩展到一个新的,更通用的模型,称为“条件高斯成对马尔可夫切换模型”(CGPMSM),在此模型中不必提供马尔可夫。第二个贡献是考虑CGPMSM的一个特殊情况,其中是Markov,并且可以在线性时间复杂度的情况下执行在均方误差意义上最佳的精确滤波器。一些实验表明,所提出的方法和合适的粒子过滤器具有相当的效率,而第二种方法要快得多。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号