首页> 外文期刊>IEEE Transactions on Automatic Control >Fenchel Dual Gradient Methods for Distributed Convex Optimization Over Time-Varying Networks
【24h】

Fenchel Dual Gradient Methods for Distributed Convex Optimization Over Time-Varying Networks

机译:时变网络上分布凸优化的Fenchel对偶梯度法

获取原文
获取原文并翻译 | 示例

摘要

We develop a family of Fenchel dual gradient methods for solving constrained, strongly convex, but not necessarily smooth multi-agent optimization problems over time-varying networks. The proposed algorithms are constructed on the basis of weighted Fenchel dual gradients and can be implemented in a fully decentralized fashion. We show that the proposed algorithms drive all the agents to both primal and dual optimality at sublinear rates under a standard connectivity condition. Compared with the existing distributed optimization methods that also have convergence rate guarantees over time-varying networks, our algorithms are able to address constrained problems and have better scalability with respect to network size and time for reaching connectivity. The competent performance of the Fenchel dual gradient methods is demonstrated via simulations.
机译:我们开发了一系列Fenchel对偶梯度方法,用于解决时变网络上的约束,强凸但不一定平滑的多主体优化问题。所提出的算法是在加权Fenchel对偶梯度的基础上构建的,并且可以以完全分散的方式实现。我们表明,提出的算法在标准连通性条件下以亚线性速率驱动所有代理同时达到原始和对偶最优。与在时变网络上也具有收敛速率保证的现有分布式优化方法相比,我们的算法能够解决受约束的问题,并且在达到连接性的网络大小和时间方面具有更好的可伸缩性。通过仿真证明了Fenchel双梯度法的出色性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号