首页> 外文期刊>Automated software engineering >Natural language ambiguity resolution by intelligent semantic annotation of software requirements
【24h】

Natural language ambiguity resolution by intelligent semantic annotation of software requirements

机译:通过智能语义诠释的软件要求的自然语言模糊分辨率

获取原文
获取原文并翻译 | 示例

摘要

Natural Language (NL) is the root cause of ambiguity in the SRS document. The quality of the software development process can be improved by mitigating the risk with the use of semantically controlled representation. A possible solution to handle ambiguity can be the use of a mathematical formal logic representation in place of NL to capture software requirements. However, the use of formal logic is a complex task. A wrongly written formal logic will be difficult to handle and it will create serious problems in later stages of software development. Furthermore, stakeholders are typically not able to understand mathematical logic. Hence, this solution does not look feasible. Another possible way of addressing above discussed ambiguity problem is the use of controlled natural languages (CNL). It can work as a bridge between NL and formal representation. Since Requirement Analysis is based on communication and the analyst's experience, it can be modeled up to a certain limit. This limit gives birth to controlled language. If the document is written in a controlled language, it will be feasible for the development team to use a simpler and less costly linguistic tool. The CNLs are syntactically unambiguous, semantically consistent and, controlled. Several CNLs could be found in literature such as ACE, PENG, CPL, Formalized-English, and Semantics of Business Vocabulary and Rules (SBVR), etc. We aim to use an SBVR based CNL to capture stakeholder's requirements and prepare an SRS document using SBVR. Such software requirements will not only be syntactically clear but also semantically consistent.
机译:自然语言(NL)是SRS文档中歧义的根本原因。通过使用语义控制的表示来改善风险,可以提高软件开发过程的质量。处理歧义的可能解决方案可以是使用数学正式逻辑表示来代替NL以捕获软件要求。但是,使用正式逻辑是一个复杂的任务。错误地写的正式逻辑将难以处理,并且在软件开发的后期阶段将产生严重问题。此外,利益相关者通常无法理解数学逻辑。因此,该解决方案看起来不可行。解决上述讨论的歧义问题的另一种可能的方法是使用受控的自然语言(CNL)。它可以作为NL和正式表示之间的桥梁。由于需求分析是基于通信和分析师的经验,因此可以将其建模到一定限度。此限制生成受控语言。如果文档以受控语言编写,则开发团队可以使用更简单,更昂贵的语言工具是可行的。 CNLS在语法上是明确的,语义一致的,并控制。在文学中可以找到几种CNL,例如ACE,PENG,CPL,正式的英语和商业词汇和规则(SBVR)的语义等。我们的目标是使用基于SBVR的CNL来捕获利益相关者的要求并使用SRS文件准备SBVR。此类软件要求不仅是语法清晰的,而且还在语义上是一致的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号