首页> 外文期刊>Audio, Speech, and Language Processing, IEEE/ACM Transactions on >Primary-Ambient Extraction Using Ambient Spectrum Estimation for Immersive Spatial Audio Reproduction
【24h】

Primary-Ambient Extraction Using Ambient Spectrum Estimation for Immersive Spatial Audio Reproduction

机译:使用环境频谱估计进行原始环境提取,以沉浸式空间音频再现

获取原文
获取原文并翻译 | 示例

摘要

The diversity of today’s playback systems requires a flexible, efficient, and immersive reproduction of sound scenes in digital media. Spatial audio reproduction based on primary-ambient extraction (PAE) fulfills this objective, where accurate extraction of primary and ambient components from sound mixtures in channel-based audio is crucial. Severe extraction error was found in existing PAE approaches when dealing with sound mixtures that contain a relatively strong ambient component, a commonly encountered case in the sound scenes of digital media. In this paper, we propose a novel ambient spectrum estimation (ASE) framework to improve the performance of PAE. The ASE framework exploits the equal magnitude of the uncorrelated ambient components in two channels of a stereo signal, and reformulates the PAE problem into the problem of estimating either ambient phase or magnitude. In particular, we take advantage of the sparse characteristic of the primary components to derive sparse solutions for ASE based PAE, together with an approximate solution that can significantly reduce the computational cost. Our objective and subjective experimental results demonstrate that the proposed ASE approaches significantly outperform existing approaches, especially when the ambient component is relatively strong.
机译:当今播放系统的多样性要求数字媒体中声音场景的灵活,高效和身临其境的再现。基于主要环境提取(PAE)的空间音频再现实现了此目标,其中从基于通道的音频中混合声音中准确提取主要成分和环境成分至关重要。在处理包含相对强的环境成分的混合声音时,在现有的PAE方法中发现了严重的提取错误,这是数字媒体声音场景中经常遇到的情况。在本文中,我们提出了一种新颖的环境频谱估计(ASE)框架来提高PAE的性能。 ASE框架利用立体声信号两个通道中不相关的环境分量的相等幅度,并将PAE问题重新表述为估算环境相位或幅度的问题。特别是,我们利用主要组件的稀疏特性来导出基于ASE的PAE的稀疏解,以及可以显着降低计算成本的近似解。我们的客观和主观实验结果表明,所提出的ASE方法显着优于现有方法,尤其是当环境成分相对较强时。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号