首页> 外文期刊>Audio, Speech, and Language Processing, IEEE/ACM Transactions on >Low-Complexity Direction-of-Arrival Estimation Based on Wideband Co-Prime Arrays
【24h】

Low-Complexity Direction-of-Arrival Estimation Based on Wideband Co-Prime Arrays

机译:基于宽带共素阵列的低复杂度到达方向估计

获取原文
获取原文并翻译 | 示例

摘要

A class of low-complexity compressive sensing-based direction-of-arrival (DOA) estimation methods for wideband co-prime arrays is proposed. It is based on a recently proposed narrowband estimation method, where a virtual array model is generated by directly vectorizing the covariance matrix and then using a sparse signal recovery method to obtain the estimation result. As there are a large number of redundant entries in both the auto-correlation and cross-correlation matrices of the two sub-arrays, they can be combined together to form a model with a significantly reduced dimension, thereby leading to a solution with much lower computational complexity without sacrificing performance. A further reduction in complexity is achieved by removing noise power estimation from the formulation. Then, the two proposed low-complexity methods are extended to the wideband realm utilizing a group sparsity based signal reconstruction method. A particular advantage of group sparsity is that it allows a much larger unit inter-element spacing than the standard co-prime array and therefore leads to further improved performance.
机译:提出了一种基于低复杂度压缩感知的宽带共质数阵列到达方向估计方法。它基于最近提出的窄带估计方法,其中通过直接矢量化协方差矩阵,然后使用稀疏信号恢复方法来获得估计结果,从而生成虚拟阵列模型。由于两个子阵列的自相关矩阵和互相关矩阵中都有大量冗余条目,因此可以将它们组合在一起以形成尺寸明显减小的模型,从而导致解决方案的成本低得多计算复杂度而又不牺牲性能。通过从配方中去除噪声功率估算,可以进一步降低复杂度。然后,利用基于群稀疏性的信号重构方法将两种提出的低复杂度方法扩展到宽带领域。组稀疏性的一个特殊优点是,与标准的互质阵列相比,它允许更大的单元间间距,因此可以进一步提高性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号