首页> 外文期刊>Audio, Speech, and Language Processing, IEEE/ACM Transactions on >From Feedforward to Recurrent LSTM Neural Networks for Language Modeling
【24h】

From Feedforward to Recurrent LSTM Neural Networks for Language Modeling

机译:从前馈到递归LSTM神经网络进行语言建模

获取原文
获取原文并翻译 | 示例

摘要

Language models have traditionally been estimated based on relative frequencies, using count statistics that can be extracted from huge amounts of text data. More recently, it has been found that neural networks are particularly powerful at estimating probability distributions over word sequences, giving substantial improvements over state-of-the-art count models. However, the performance of neural network language models strongly depends on their architectural structure. This paper compares count models to feedforward, recurrent, and long short-term memory (LSTM) neural network variants on two large-vocabulary speech recognition tasks. We evaluate the models in terms of perplexity and word error rate, experimentally validating the strong correlation of the two quantities, which we find to hold regardless of the underlying type of the language model. Furthermore, neural networks incur an increased computational complexity compared to count models, and they differently model context dependences, often exceeding the number of words that are taken into account by count based approaches. These differences require efficient search methods for neural networks, and we analyze the potential improvements that can be obtained when applying advanced algorithms to the rescoring of word lattices on large-scale setups.
机译:传统上,语言模型是根据相对频率估算的,使用的计数统计可以从大量文本数据中提取。最近,已经发现神经网络在估计单词序列上的概率分布方面特别强大,与最新的计数模型相比,有了很大的改进。但是,神经网络语言模型的性能在很大程度上取决于其体系结构。本文将计数模型与两个大型词汇语音识别任务的前馈,循环和长短期记忆(LSTM)神经网络变体进行了比较。我们根据困惑度和单词错误率评估模型,通过实验验证这两个数量之间的强相关性,无论语言模型的基本类型如何,我们都认为这两个相关性很强。此外,与计数模型相比,神经网络的计算复杂性增加,并且它们对上下文相关性的建模方式也不同,通常超过了基于计数的方法所考虑的单词数。这些差异需要用于神经网络的有效搜索方法,并且我们分析了在将高级算法应用于大规模设置中的单词晶格记录时可以获得的潜在改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号