首页> 外文期刊>Audio, Speech, and Language Processing, IEEE/ACM Transactions on >Context-Dependent Piano Music Transcription With Convolutional Sparse Coding
【24h】

Context-Dependent Piano Music Transcription With Convolutional Sparse Coding

机译:卷积稀疏编码的上下文相关钢琴音乐转录

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a novel approach to automatic transcription of piano music in a context-dependent setting. This approach employs convolutional sparse coding to approximate the music waveform as the summation of piano note waveforms (dictionary elements) convolved with their temporal activations (onset transcription). The piano note waveforms are pre-recorded for the specific piano to be transcribed in the specific environment. During transcription, the note waveforms are fixed and their temporal activations are estimated and post-processed to obtain the pitch and onset transcription. This approach works in the time domain, models temporal evolution of piano notes, and estimates pitches and onsets simultaneously in the same framework. Experiments show that it significantly outperforms a state-of-the-art music transcription method trained in the same context-dependent setting, in both transcription accuracy and time precision, in various scenarios including synthetic, anechoic, noisy, and reverberant environments.
机译:本文提出了一种在上下文相关的环境中自动复制钢琴音乐的新方法。这种方法采用卷积稀疏编码来近似音乐波形,因为钢琴音符波形(字典元素)与它们的时间激活(开始转录)卷积在一起。预先记录了要在特定环境中转录的特定钢琴的钢琴音符波形。在转录过程中,音符波形是固定的,并且估计它们的时间激活并进行后处理以获得音高和开始转录。这种方法在时域中起作用,对钢琴音符的时间演变进行建模,并在同一框架中同时估计音高和起音。实验表明,在包括合成,无回声,嘈杂和混响环境在内的各种情况下,无论是在转录精度还是时间精度方面,该方法都明显优于在相同的上下文相关设置下训练的最新音乐转录方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号