首页> 外文期刊>Audio, Speech, and Language Processing, IEEE/ACM Transactions on >Maximum Likelihood PSD Estimation for Speech Enhancement in Reverberation and Noise
【24h】

Maximum Likelihood PSD Estimation for Speech Enhancement in Reverberation and Noise

机译:混响和噪声中语音增强的最大似然PSD估计

获取原文
获取原文并翻译 | 示例

摘要

In this contribution, we focus on the problem of power spectral density (PSD) estimation from multiple microphone signals in reverberant and noisy environments. The PSD estimation method proposed in this paper is based on the maximum likelihood (ML) methodology. In particular, we derive a novel ML PSD estimation scheme that is suitable for sound scenes which besides speech and reverberation consists of an additional noise component whose second-order statistics are known. The proposed algorithm is shown to outperform an existing similar algorithm in terms of PSD estimation accuracy. Moreover, it is shown numerically that the mean-squared estimation error achieved by the proposed method is near the limit set by the corresponding Cramér–Rao lower bound. The speech dereverberation performance of a multichannel Wiener filter based on the proposed PSD estimators is measured using several instrumental measures and is shown to be higher than when the competing estimator is used. Moreover, we perform a speech intelligibility test where we demonstrate that both the proposed and the competing PSD estimators lead to similar intelligibility improvements.
机译:在此贡献中,我们重点研究在混响和嘈杂环境中从多个麦克风信号估计功率谱密度(PSD)的问题。本文提出的PSD估计方法基于最大似然(ML)方法。特别地,我们推导了一种适用于声音场景的新颖的ML PSD估计方案,该方案除了语音和混响之外还包括其二阶统计量已知的附加噪声成分。所显示的算法在PSD估计精度方面优于现有的类似算法。此外,从数值上显示,通过所提出的方法实现的均方估计误差接近于由相应的Cramér-Rao下限设置的极限。基于建议的PSD估计器的多通道Wiener滤波器的语音去混响性能是使用几种仪器测量方法测得的,并且显示出比使用竞争性估计器时更高的性能。此外,我们执行语音清晰度测试,证明所提议的和竞争的PSD估计量均会导致类似的清晰度改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号