首页> 外文期刊>Audio, Speech, and Language Processing, IEEE/ACM Transactions on >ML Estimation and CRBs for Reverberation, Speech, and Noise PSDs in Rank-Deficient Noise Field
【24h】

ML Estimation and CRBs for Reverberation, Speech, and Noise PSDs in Rank-Deficient Noise Field

机译:RANCE缺陷噪声场中的混响,语音和噪声PSD的ML估计和CRB

获取原文
获取原文并翻译 | 示例

摘要

Speech communication systems are prone to performance degradation in reverberant and noisy acoustic environments. Dereverberation and noise reduction algorithms typically require several model parameters, e.g. the speech, reverberation and noise power spectral densities (PSDs). A commonly used assumption is that the noise PSD matrix is known. However, in practical acoustic scenarios, the noise PSD matrix is unknown and should be estimated along with the speech and reverberation PSDs. In this article, we consider the case of rank-deficient noise PSD matrix, which arises when the noise signal consists of multiple directional noise sources, whose number is less than the number of microphones. We derive two closed-form maximum likelihood estimators (MLEs). The first is a non-blocking-based estimator which jointly estimates the speech, reverberation and noise PSDs, and the second is a blocking-based estimator, which first blocks the speech signal and then jointly estimates the reverberation and noise PSDs. Both estimators are analytically compared and analyzed, and mean square errors (MSEs) expressions are derived. Furthermore, Cramér-Rao Bounds (CRBs) on the estimated PSDs are derived. The proposed estimators are examined using both simulation and real reverberant and noisy signals, demonstrating the advantage of the proposed method compared to competing estimators.
机译:语音通信系统易于在混响和嘈杂的声学环境中进行性能下降。 DERERATERATION和降噪算法通常需要多种型号参数,例如:语音,混响和噪声功率谱密度(PSDS)。常用的假设是噪声PSD矩阵是已知的。然而,在实际的声学场景中,噪声PSD矩阵未知,应估计和混响PSD。在本文中,我们考虑秩缺陷噪声PSD矩阵的情况,当噪声信号由多个方向噪声源组成时,其数量小于麦克风的数量。我们推出了两个封闭式最大似然估计(MLES)。首先是基于非阻塞的估计器,该估计器共同估计语音,混响和噪声PSD,第二是基于阻塞的估计器,其首先阻止语音信号,然后联合估计混响和噪声PSD。在分析和分析中,两个估计器都进行了分析和分析,均导出均方误差(MSES)表达式。此外,估计的PSDS上的Cramér-Rao边界(CRB)均得到。使用模拟和真正的混响和噪声信号检查所提出的估计器,与竞争估计器相比,展示了所提出的方法的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号