首页> 外文期刊>Audio, Speech, and Language Processing, IEEE/ACM Transactions on >Square Root-Based Multi-Source Early PSD Estimation and Recursive RETF Update in Reverberant Environments by Means of the Orthogonal Procrustes Problem
【24h】

Square Root-Based Multi-Source Early PSD Estimation and Recursive RETF Update in Reverberant Environments by Means of the Orthogonal Procrustes Problem

机译:通过正交促进问题解决方形基于根的多源早期PSD估计和递归RETF更新

获取原文
获取原文并翻译 | 示例

摘要

Multi-channel short-time Fourier transform (STFT) domain-based processing of reverberant microphone signals commonly relies on power-spectral-density (PSD) estimates of early source images, where early refers to reflections contained within the same STFT frame. State-of-the-art approaches to multi-source early PSD estimation, given an estimate of the associated relative early transfer functions (RETFs), conventionally minimize the approximation error defined with respect to the early correlation matrix, requiring non-negative inequality constraints on the PSDs. Instead, we here propose to factorize the early correlation matrix and minimize the approximation error defined with respect to the early-correlation-matrix square root. The proposed minimization problem—constituting a generalization of the so-called orthogonal Procrustes problem—seeks a unitary matrix and the square roots of the early PSDs up to an arbitrary complex argument, whereby non-negative inequality constraints become redundant. A solution is obtained iteratively, requiring one singular value decomposition (SVD) per iteration. The estimated unitary matrix and early PSD square roots further allow to recursively update the RETF estimate, which is not inherently possible in the conventional approach. An estimate of the said early-correlation-matrix square root itself is obtained by means of the generalized eigenvalue decomposition (GEVD), where we further propose to restore non-stationarities by desmoothing the generalized eigenvalues in order to compensate for inevitable recursive averaging. Simulation results indicate fast convergence of the proposed multi-source early PSD estimation approach in only one iteration if initialized appropriately, and better performance as compared to the conventional approach. A MATLAB implementation is available.
机译:混响麦克风信号的多通道短时傅立叶变换(STFT)基于域的基于域的处理通常依赖于早期源图像的功率谱密度(PSD)估计,其中早期是指在同一STFT帧内包含的反射。多源早期PSD估计的最先进方法,给定相关联的相对早期传递函数(RetF),通常最小化关于早期相关矩阵定义的近似误差,需要非负不等式约束在PSD上。相反,我们在此建议根据早期相关矩阵来分解早期相关矩阵,并最小化关于早期相关矩阵平方根的近似误差。所提出的最小化问题 - 构成所谓的正交汇总问题的概括问题 - 寻求一个单一的矩阵和早期psds的平方根,到任意复杂的参数,由此非负不等式约束变得多余。迭代地获得解决方案,需要每次迭代一个奇异值分解(SVD)。估计的单一基质和早期PSD平方根还允许递归地更新RetF估计,这在传统方法中并不固有。通过推广的特征值分解(GEVD)获得所述早期相关矩阵平方根本身的估计,其中我们进一步提出通过DESSMOOTH恢复非实践,以便补偿不可避免的递归平均。仿真结果表明,如果初始化,并且与传统方法相比,则仅在一次迭代中初始化的迭代中所提出的多源早期PSD估计方法的快速收敛性。 MATLAB实现可用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号