首页> 外文期刊>Audio, Speech, and Language Processing, IEEE/ACM Transactions on >Integrated Sidelobe Cancellation and Linear Prediction Kalman Filter for Joint Multi-Microphone Speech Dereverberation, Interfering Speech Cancellation, and Noise Reduction
【24h】

Integrated Sidelobe Cancellation and Linear Prediction Kalman Filter for Joint Multi-Microphone Speech Dereverberation, Interfering Speech Cancellation, and Noise Reduction

机译:集成的Sidelobe取消和线性预测卡尔曼滤波器,用于联合多麦克风语音DERERATION,干扰语音取消和降噪

获取原文
获取原文并翻译 | 示例

摘要

In multi-microphone speech enhancement, reverberation as well as additive noise and/or interfering speech are commonly suppressed by deconvolution and spatial filtering, e.g., using multi-channel linear prediction (MCLP) on the one hand and beamforming, e.g., a generalized sidelobe canceler (GSC), on the other hand. In this article, we consider several reverberant speech components, whereof some are to be dereverberated and others to be canceled, as well as a diffuse (e.g., babble) noise component to be suppressed. In order to perform both deconvolution and spatial filtering, we integrate MCLP and the GSC into a novel architecture referred to as integrated sidelobe cancellation and linear prediction (ISCLP), where the sidelobe-cancellation (SC) filter and the linear prediction (LP) filter operate in parallel, but on different microphone signal frames. Within ISCLP, we estimate both filters jointly by means of a single Kalman filter. We further propose a spectral Wiener gain post-processor, which is shown to relate to the Kalman filter's posterior state estimate. The presented ISCLP Kalman filter is benchmarked against two state-of-the-art approaches, namely first a pair of alternating Kalman filters respectively performing dereverberation and noise reduction, and second an MCLP+GSC Kalman filter cascade. While the ISCLP Kalman filter is roughly $M^2$ times less expensive than both reference algorithms, where $M$ denotes the number of microphones, it is shown to perform at least similarly as compared to the former, and to outperform the latter. A MATLAB implementation is available.
机译:在多麦克风语音增强中,混响以及附加噪声和/或干扰语音通常通过解码和空间滤波通常抑制,例如,在一方面使用多通道线性预测(MCLP)和波束成形,例如,广义的Sidelobe另一方面,取消者(GSC)。在本文中,我们考虑了几个混响语音组件,其中一些是Dereverated和其他要被取消的,以及弥漫性(例如,禁止的)噪声分量。为了执行折断和空间滤波,我们将MCLP和GSC集成到称为集成的Sidelobe取消和线性预测(ISCLP)的新颖架构中,其中Sidelobe消除(SC)滤波器和线性预测(LP)滤波器并行操作,但在不同的麦克风信号帧上。在ISCLP中,我们通过单个Kalman滤波器共同估算两个过滤器。我们进一步提出了一种光谱维纳增益后处理器,其被示出与卡尔曼滤波器的后状态估计有关。所呈现的ISCLP卡尔曼滤波器与两个最先进的方法基准测试,即第一一对分别执行DERE失眠和降噪的交替卡尔曼滤波器,以及第二个MCLP + GSC卡尔曼滤波器级联。虽然ISCLP卡尔曼滤波器粗略<内联公式XMLNS:MML =“http://www.w3.org/1998/math/mathml”xmlns:xlink =“http://www.w3.org/1999/xlink”> $ M ^ 2 $ 比参考算法便宜的时间,在哪里<内联公式XMLNS:MML =“http://www.w3.org/1998/math/mathml”xmlns:xlink =“http://www.w3.org/1999/xlink”> $ M $ 表示麦克风的数量,与前者相比,它被示出至少类似地执行,并且优于后者。 MATLAB实现可用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号