首页> 外文期刊>Audio, Speech, and Language Processing, IEEE/ACM Transactions on >Customer Satisfaction Estimation in Contact Center Calls Based on a Hierarchical Multi-Task Model
【24h】

Customer Satisfaction Estimation in Contact Center Calls Based on a Hierarchical Multi-Task Model

机译:基于分层多任务模型的联络中心呼叫中的客户满意度估算

获取原文
获取原文并翻译 | 示例

摘要

This article presents a novel customer satisfaction (CS) estimation method that outputs both turn-level and call-level estimations simultaneously. Our key idea is to directly apply turn-level estimation results to call-level estimation and optimize them jointly; previous works treat both as being independent. Our proposal applies long short-term memory recurrent neural networks (LSTM-RNNs) to turn-level and call-level CS estimation to capture long-range sequential context in contact center calls. In addition, both networks are hierarchically stacked so as to use turn-level estimation results for call-level estimation directly. In order to learn the relationship between the two tasks, we also introduce joint optimization training to the stacked model. Several analyses of turn-level and call-level CS are provided on acted and real calls to support the proposed method. Experiments show that the proposed framework outperforms the conventional methods in both turn-level and call-level estimations.
机译:本文提出了一种新颖的客户满意度(CS)估计方法,其同时输出转弯级和呼叫级别估计。我们的主要思想是直接将转弯级估计结果应用于呼叫级别估计并共同优化它们;以前的作品视为独立。我们的提案应用了长期内记忆经常性神经网络(LSTM-RNNS)来转动级别和呼叫级CS估计,以捕获联络中心呼叫中的远程顺序上下文。此外,两个网络都是分层堆叠的,以便直接使用转弯级估计来进行呼叫级别估计。为了学习两项任务之间的关系,我们还向堆叠模型引入联合优化培训。在代理和实际呼叫上提供了几次转弯和呼叫级CS的分析,以支持提出的方法。实验表明,所提出的框架在转弯级和呼叫级别估计中占据了传统方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号