首页> 外文期刊>Audio, Speech, and Language Processing, IEEE/ACM Transactions on >Transfer Sparse Discriminant Subspace Learning for Cross-Corpus Speech Emotion Recognition
【24h】

Transfer Sparse Discriminant Subspace Learning for Cross-Corpus Speech Emotion Recognition

机译:转移稀疏判别子空间学习跨语料库语音情感识别

获取原文
获取原文并翻译 | 示例

摘要

Cross-corpus speech emotion recognition has attracted much attention due to the widespread existence of various emotional speech in life. It takes one corpus for training and another corpus for testing, and generally involves the following two basic problems: the corpus-invariant feature representation and relevance across different corpora. To deal with these two problems, we propose a novel transfer learning method called transfer sparse discriminant subspace learning (TSDSL) in this article. Specifically, to solve the first problem, we learn a common feature subspace of different corpora by introducing the discriminative learning and $ell _{2,1}-$norm penalty, which can learn the most discriminative features across different corpora. To address the second problem, we construct a novel nearest neighbor graph as the distance metric, in which the similarity between different corpora can be measured simultaneously. Extensive experiments are carried out on cross-corpus speech emotion recognition tasks, and the results show that our method can achieve competitive performance compared with state-of-the-art algorithms.
机译:由于生活中各种情绪言论的广泛存在,交叉语料库语音情绪识别引起了很多关注。它需要一个用于训练和另一个测试语音的语料库,并且通常涉及以下两个基本问题:语料库不变的特征表示和不同语料库的相关性。要处理这两个问题,我们提出了一种新的传输学习方法,称为传输稀疏判别子空间学习(TSDSL)。具体而言,为了解决第一个问题,我们通过引入歧视性学习来学习不同基层的共同特征子空间<内联公式XMLNS:MML =“http://www.w3.org/1998/math/mathml”xmlns:xlink =“http://www.w3.org/1999/xlink”> $ eLl _ {2,1} - $ 常规罚款,可以学习不同的基层中最歧视的特征。为了解决第二个问题,我们将新颖的最近邻图构成为距离度量,其中可以同时测量不同的语料库之间的相似性。在交叉语料库语音情感识别任务上进行了广泛的实验,结果表明,与最先进的算法相比,我们的方法可以实现竞争性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号