首页> 外文期刊>Audio, Speech, and Language Processing, IEEE/ACM Transactions on >Cognitive-Driven Binaural Beamforming Using EEG-Based Auditory Attention Decoding
【24h】

Cognitive-Driven Binaural Beamforming Using EEG-Based Auditory Attention Decoding

机译:使用基于EEG的听觉注意解码的认知驱动的双耳波束形成

获取原文
获取原文并翻译 | 示例

摘要

Identifying the target speaker in hearing aid applications is an essential ingredient to improve speech intelligibility. Recently, a least-squares-based auditory attention decoding (AAD) method has been proposed to identify the target speaker from single-trial EEG recordings in an acoustic scenario with two competing speakers. Aiming at enhancing the target speaker and suppressing the interfering speaker and ambient noise, in this article, we propose a cognitive-driven speech enhancement system, consisting of a binaural beamformer which is steered based on AAD and estimated relative transfer function (RTF) vectors, which require estimates of the direction-of-arrivals (DOAs) of both speakers. For binaural beamforming and to generate reference signals for AAD, we consider either minimum-variance-distortionless-response (MVDR) beamformers or linearly-constrained-minimum-variance (LCMV) beamformers. Contrary to the binaural MVDR beamformer, the binaural LCMV beamformer allows to preserve the spatial impression of the acoustic scene and to control the suppression of the interfering speaker, which is important when intending to switch attention between speakers. The speech enhancement performance of the proposed system is evaluated in terms of the binaural signal-to-interference-plus-noise ratio ($ext {SINR}$) improvement in anechoic and reverberant conditions. Furthermore, we investigate the impact of RTF and DOA estimation errors and AAD errors on the speech enhancement performance. The experimental results show that the proposed system using LCMV beamformers yields a larger decoding performance and binaural $ext {SINR}$ improvement compared to using MVDR beamformers.
机译:识别助听器应用中的目标扬声器是提高语音清晰度的重要成分。最近,已经提出了基于最小二乘的听觉解码(AAD)方法,以识别与两个竞争扬声器的声法中的单试eeg记录中的目标扬声器。旨在增强目标扬声器并抑制干扰扬声器和环境噪声,在本文中,我们提出了一种认知驱动的语音增强系统,由双耳布形成器组成,该晶体形成器基于AAD和估计的相对传递函数(RTF)向量来转向,这需要估计两个发言者的到达方向(DOA)。对于双耳波束成形并为AAC产生参考信号,我们考虑最小 - 方差 - 失真响应(MVDR)波束形成器或线性约束 - 最小方差(LCMV)波束形成器。与双耳MVDR波束形成器相反,双耳LCMV波束形成器允许保持声学场景的空间印象,并控制干扰扬声器的抑制,这在打算在扬声器之间切换注意力时是重要的。拟议系统的语音增强性能是在双耳信号到干扰的范围内(<内联公式XMLNS:MML =“http://www.w3.org/1998/math/mathml”xmlns:xlink =“http://www.w3.org/1999/xlink”> $ text {sinr} $ )改善化学和混响条件。此外,我们调查RTF和DOA估计误差和AAD错误对语音增强性能的影响。实验结果表明,使用LCMV波束形成器的提出的系统产生更大的解码性能和双耳<内联公式XMLNS:MML =“http://www.w3.org/1998/math/mathml”xmlns:xlink =“http://www.w3.org/1999/xlink”> $ text {sinr} $ 与使用MVDR波束形成器相比改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号