首页> 外文期刊>IEEE transactions on neural systems and rehabilitation engineering >Impact of Different Acoustic Components on EEG-Based Auditory Attention Decoding in Noisy and Reverberant Conditions
【24h】

Impact of Different Acoustic Components on EEG-Based Auditory Attention Decoding in Noisy and Reverberant Conditions

机译:不同声学组分对噪声和混响条件中脑电极听力解码的影响

获取原文
获取原文并翻译 | 示例

摘要

Identifying the target speaker in hearing aid applications is an essential ingredient to improve speech intelligibility. Recently, a least-squares-based method has been proposed to identify the attended speaker from single-trial EEG recordings for an acoustic scenario with two competing speakers. This least-squares-based auditory attention decoding (AAD) method aims at decoding auditory attention by reconstructing the attended speech envelope from the EEG recordings using a trained spatio-temporal filter. While the performance of this AAD method has been mainly studied for noiseless and anechoic acoustic conditions, it is important to fully understand its performance in realistic noisy and reverberant acoustic conditions. In this paper, we investigate AAD using EEG recordings for different acoustic conditions (anechoic, reverberant, noisy, and reverberant-noisy). In particular, we investigate the impact of different acoustic conditions for AAD filter training and for decoding. In addition, we investigate the influence on the decoding performance of the different acoustic components (i.e., reverberation, background noise, and interfering speaker) in the reference signals used for decoding and the training signals used for computing the filters. First, we found that for all considered acoustic conditions it is possible to decode auditory attention with a considerably large decoding performance. In particular, even when the acoustic conditions for AAD filter training and for decoding are different, the decoding performance is still comparably large. Second, when using speech signals affected by either reverberation and/or background noise there is no significant difference in decoding performance (p > 0.05) compared to when using clean speech signals as reference signals. In contrast, when using reference signals affected by the interfering speaker, the decoding performance significantly decreases. Third, the experimental results indicate that it is even feasible to use training signals affected by reverberation, background noise and/or the interfering speaker for computing the filters.
机译:识别助听器应用中的目标扬声器是提高语音清晰度的重要成分。最近,已经提出了基于最小二乘的方法,以识别来自单次试验EEG记录的出席扬声器,以获得两个竞争扬声器的声学情景。基于个基于方块的听觉注意力解码(AAD)方法旨在通过使用训练的时空滤波器重建来自EEG录制的参与的语音包络来解码听觉。虽然这种AAD方法的性能主要用于无噪声和化学声学条件,但重要的是充分了解其在现实嘈杂和混响的声学条件下的性能。在本文中,我们使用EEG记录来调查AAD以进行不同的声学条件(AneChoic,Reacerant,Noisy和Reaceryy)。特别是,我们调查不同声学条件对AAD过滤器训练的影响和解码。此外,我们研究了用于解码的参考信号中不同声学组件(即,混响,背景噪声和干扰扬声器)对不同声学组件的解码性能的影响以及用于计算滤波器的训练信号。首先,我们发现,对于所有考虑的声学条件,可以用相当大的解码性能解码听觉注意。特别地,即使当AAD滤波器训练和解码的声学条件不同时,解码性能仍然相当大。其次,与混响和/或背景噪声影响影响的语音信号时,与使用清洁语音信号作为参考信号时,与当使用清洁语音信号时,对解码性能(P> 0.05)没有显着差异。相反,当使用受干扰扬声器影响的参考信号时,解码性能显着降低。第三,实验结果表明,使用受混响影响的训练信号,背景噪声和/或干扰扬声器来计算过滤器是可行的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号