首页> 外文期刊>Audio, Speech, and Language Processing, IEEE/ACM Transactions on >Listening and Grouping: An Online Autoregressive Approach for Monaural Speech Separation
【24h】

Listening and Grouping: An Online Autoregressive Approach for Monaural Speech Separation

机译:听力和分组:单声道语音分离的在线自回归方法

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes an autoregressive approach to harness the power of deep learning for multi-speaker monaural speech separation. It exploits a causal temporal context in both mixture and past estimated separated signals and performs online separation that is compatible with real-time applications. The approach adopts a learned listening and grouping architecture motivated by computational auditory scene analysis, with a grouping stage that effectively addresses the label permutation problem at both frame and segment levels. Experimental results on the WSJ0-2mix benchmark show that the new approach can achieve better signal-to-distortion ratio and perceptual evaluation of speech quality scores than most of the state-of-the-art methods for both closed-set and open-set evaluations, even methods that exploit whole-utterance statistics for separation. It achieves this while requiring fewer model parameters.
机译:本文提出了一种自动回归方法,以利用深度学习的能力来实现多扬声器单声道语音分离。它利用混合和过去估计的分离信号中的因果时间上下文,并执行与实时应用程序兼容的在线分离。该方法采用受学习听觉和分组的体系结构,该体系结构受计算听觉场景分析的激励,分组阶段可以有效地解决帧和段级别的标签排列问题。在WSJ0-2mix基准测试中的实验结果表明,与大多数最新的封闭式和开放式方法相比,该新方法可以实现更好的信噪比和语音质量分数的感知评估。评估,甚至是利用整体话语统计数据进行分离的方法。它实现了这一点,同时需要更少的模型参数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号