首页> 外文期刊>Audio, Speech, and Language Processing, IEEE/ACM Transactions on >Sentiment Lexicon Construction With Hierarchical Supervision Topic Model
【24h】

Sentiment Lexicon Construction With Hierarchical Supervision Topic Model

机译:基于层次监督主题模型的情感词典构建

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a novel hierarchical supervision topic model to construct a topic-adaptive sentiment lexicon (TaSL) for higher-level classification tasks. It is widely recognized that sentiment lexicon as a useful prior knowledge is crucial in sentiment analysis or opinion mining. However, many existing sentiment lexicons are constructed ignoring the variability of the sentiment polarities of words in different topics or domains. For example, the word "amazing" can refer to causing great surprise or wonder hut can also refer to very impressive and excellent. In TaSI., we solve this issue by jointly considering the topics and sentiments of words. Documents are represented by multiple pairs of topics and sentiments, where each pair is characterized by a multinomial distribution over words. Meanwhile, this generating process is supervised under hierarchical supervision information of documents and words. The main advantage of TaSL is that the sentiment polarity of each word in different topics can be sufficiently captured. This model is beneficial to construct a domain-specific sentiment lexicon and then effectively improve the performance of sentiment classification. Extensive experimental results on four publicly available datasets, MR, OMD, semEvall3A, and semEvall6B were presented to demonstrate the usefulness of the proposed approach. The results have shown that TaSL performs better than the existing manual sentiment lexicon (MPQA), the topic model based domain-specific lexicon (ssLDA), the expanded lexicons(Weka-ED, Weka-STS, NRC, Liu's), and deep neural network based lexicons (nnLexicon, HIT, HSSWE).
机译:在本文中,我们提出了一个新颖的层次监督主题模型,以构建用于高级分类任务的主题自适应情感词典(TaSL)。众所周知,情感词典是有用的先验知识,对于情感分析或观点挖掘至关重要。但是,许多现有的情感词典在构建时都忽略了不同主题或领域中单词的情感极性的可变性。例如,“令人惊奇”一词可以指引起极大的惊奇或惊奇,小屋也可以指非常令人印象深刻和出色。在TaSI。中,我们通过共同考虑单词的主题和情感来解决此问题。文档由多对主题和情感表示,其中每对主题均由单词上的多项式分布来表征。同时,该生成过程在文档和单词的分级监督信息下进行监督。 TaSL的主要优点是可以充分捕获不同主题中每个单词的情感极性。该模型有利于构建特定领域的情感词典,进而有效提高情感分类的性能。提出了四个公开可用的数据集MR,OMD,semEvall3A和semEval16B的广泛实验结果,以证明该方法的有效性。结果表明,TaSL的性能优于现有的手动情感词典(MPQA),基于主题模型的领域特定词典(ssLDA),扩展词典(Weka-ED,Weka-STS,NRC,Liu's)和深度神经网络。基于网络的词典(nnLexicon,HIT,HSSWE)。

著录项

  • 来源
  • 作者单位

    Beijing Jiaotong Univ, Sch Comp & Informat Technol, Beijing 100044, Peoples R China;

    Beijing Jiaotong Univ, Sch Comp & Informat Technol, Beijing 100044, Peoples R China;

    Beijing Jiaotong Univ, Sch Comp & Informat Technol, Beijing 100044, Peoples R China;

    Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China|Univ Chinese Acad Sci, Sch Econ & Management, Beijing 100190, Peoples R China|City Univ Hong Kong, Dept Syst Engn & Engn Management, Hong Kong, Peoples R China|Chinese Acad Sci, Ctr Forecasting Sci, Beijing 100190, Peoples R China;

    Hong Kong Baptist Univ, Ctr Math Imaging & Vis, Hong Kong, Peoples R China|Hong Kong Baptist Univ, Dept Math, Hong Kong, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Sentiment analysis; topic model; sentiment lexicon construction; opinion mining; text mining;

    机译:情感分析;主题模型;情感词典构建;观点挖掘;文本挖掘;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号