首页> 外文期刊>IEEE transactions on audio, speech and language processing >Average divergence distance as a statistical discrimination measure for hidden Markov models
【24h】

Average divergence distance as a statistical discrimination measure for hidden Markov models

机译:平均发散距离作为隐马尔可夫模型的统计判别指标

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes and evaluates a new statistical discrimination measure for hidden Markov models (HMMs) extending the notion of divergence, a measure of average discrimination information originally defined for two probability density functions. Similar distance measures have been proposed for the case of HMMs, but those have focused primarily on the stationary behavior of the models. However, in speech recognition applications, the transient aspects of the models have a principal role in the discrimination process and, consequently, capturing this information is crucial in the formulation of any discrimination indicator. This paper proposes the notion of average divergence distance (ADD) as a statistical discrimination measure between two HMMs, considering the transient behavior of these models. This paper provides an analytical formulation of the proposed discrimination measure, a justification of its definition based on the Viterbi decoding approach, and a formal proof that this quantity is well defined for a left-to-right HMM topology with a final nonemitting state, a standard model for basic acoustic units in automatic speech recognition (ASR) systems. Using experiments based on this discrimination measure, it is shown that ADD provides a coherent way to evaluate the discrimination dissimilarity between acoustic models.
机译:本文提出并评估了一种新的针对隐马尔可夫模型(HMM)的统计歧视度量,该度量扩展了发散的概念,该度量是最初为两个概率密度函数定义的平均歧视信息的度量。对于HMM,已经提出了类似的距离度量,但是这些度量主要集中在模型的静态行为上。但是,在语音识别应用中,模型的瞬态方面在识别过程中起主要作用,因此,捕获此信息对于制定任何识别指标至关重要。考虑到这些模型的瞬态行为,本文提出了平均发散距离(ADD)的概念,作为两个HMM之间的统计判别措施。本文提供了拟议的歧视措施的分析表述,基于维特比解码方法对其定义的论证,以及形式证明,该数量对于具有最终非发射状态的从左到右的HMM拓扑定义得很好,即自动语音识别(ASR)系统中基本声学单元的标准模型。使用基于这种区分度量的实验,表明ADD提供了一种一致的方法来评估声学模型之间的区分差异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号