首页> 外文期刊>IEEE transactions on audio, speech and language processing >Enhancing the Tracking of Partials for the Sinusoidal Modeling of Polyphonic Sounds
【24h】

Enhancing the Tracking of Partials for the Sinusoidal Modeling of Polyphonic Sounds

机译:增强对多音的正弦建模的部分跟踪

获取原文
获取原文并翻译 | 示例

摘要

This paper addresses the problem of tracking partials, i.e., determining the evolution over time of the parameters of a given number of sinusoids with respect to the analyzed audio stream. We first show that the minimal frequency difference heuristic generally used to identify continuities between local maxima of successive short-time spectra can be successfully generalized using the linear prediction formalism to handle modulated sounds such as musical tones with vibrato. The spectral properties of the evolutions in time of the parameters of the partials are next studied to ensure that the parameters of the partials effectively satisfy the slow time-varying constraint of the sinusoidal model. These two improvements are combined in a new algorithm designed for the sinusoidal modeling of polyphonic sounds. The comparative tests show that onsets/offsets of sinusoids as well as closely spaced sinusoids are better identified and stochastic components are better avoided.
机译:本文解决了跟踪声部的问题,即确定相对于分析音频流的给定数量正弦曲线参数随时间的演变。我们首先显示,通常用于识别连续短时频谱的局部最大值之间的连续性的最小频差启发法可以使用线性预测形式主义来成功地推广,以处理诸如颤音之类的已调声音。接下来研究零件参数的时间演化谱特性,以确保零件参数有效地满足正弦模型的慢时变约束。将这两项改进结合到一种新算法中,该算法专为和弦声音的正弦建模而设计。对比测试表明,可以更好地识别正弦曲线的开始/偏移以及间隔很近的正弦曲线,并且可以更好地避免随机分量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号