首页> 外文期刊>Selected Topics in Signal Processing, IEEE Journal of >Polyphonic Pitch Estimation and Instrument Identification by Joint Modeling of Sustained and Attack Sounds
【24h】

Polyphonic Pitch Estimation and Instrument Identification by Joint Modeling of Sustained and Attack Sounds

机译:持续音和攻击音的联合建模用于复音音高估计和乐器识别

获取原文
获取原文并翻译 | 示例

摘要

Polyphonic pitch estimation and musical instrument identification are some of the most challenging tasks in the field of music information retrieval (MIR). While existing approaches have focused on the modeling of harmonic partials, we design a joint Gaussian mixture model of the harmonic partials and the inharmonic attack of each note. This model encodes the power of each partial over time as well as the spectral envelope of the attack part. We derive an expectation–maximization (EM) algorithm to estimate the pitch and the parameters of the notes. We then extract timbre features both from the harmonic and the attack part via principal component analysis (PCA) over the estimated model parameters. Musical instrument recognition for each estimated note is finally carried out with a support vector machine (SVM) classifier. Experiments conducted on mixtures of isolated notes as well as real-world polyphonic music show higher accuracy over state-of-the-art approaches based on the modeling of harmonic partials only.
机译:和弦音高估计和乐器识别是音乐信息检索(MIR)领域中最具挑战性的任务。尽管现有方法着重于谐波部分的建模,但我们设计了谐波部分和每个音符的非谐音攻击的联合高斯混合模型。该模型对随时间变化的每个部分的功率以及攻击部分的频谱包络进行编码。我们推导出了期望最大化(EM)算法来估计音高和音符的参数。然后,通过对估计的模型参数进行主成分分析(PCA),从谐波和起音部分中提取音色特征。最后,使用支持向量机(SVM)分类器对每个估计音符进行乐器识别。对孤立音符和真实世界的复调音乐进行混合的实验表明,与仅基于谐波部分建模的最新方法相比,该方法具有更高的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号