首页> 外文期刊>IEEE transactions on audio, speech and language processing >Joint Factor Analysis Versus Eigenchannels in Speaker Recognition
【24h】

Joint Factor Analysis Versus Eigenchannels in Speaker Recognition

机译:说话人识别中的联合因素分析与特征通道

获取原文
获取原文并翻译 | 示例

摘要

We compare two approaches to the problem of session variability in Gaussian mixture model (GMM)-based speaker verification, eigenchannels, and joint factor analysis, on the National Institute of Standards and Technology (NIST) 2005 speaker recognition evaluation data. We show how the two approaches can be implemented using essentially the same software at all stages except for the enrollment of target speakers. We demonstrate the effectiveness of zt-norm score normalization and a new decision criterion for speaker recognition which can handle large numbers of t-norm speakers and large numbers of speaker factors at little computational cost. We found that factor analysis was far more effective than eigenchannel modeling. The best result we obtained was a detection cost of 0.016 on the core condition (all trials) of the evaluation
机译:在美国国家标准技术研究院(NIST)2005说话者识别评估数据上,我们比较了两种基于高斯混合模型(GMM)的说话者验证,特征通道和联合因子分析中的会话可变性问题的方法。我们展示了除了目标演讲者的注册之外,在所有阶段如何使用基本相同的软件可以实现这两种方法。我们证明了zt-norm分数归一化的有效性和一种新的说话人识别决策标准,该准则可以以很少的计算成本处理大量t-norm说话人和大量说话人因素。我们发现因子分析比本征通道建模要有效得多。我们获得的最佳结果是评估的核心条件(所有试验)的检测成本为0.016

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号