首页> 外文期刊>IEEE transactions on audio, speech and language processing >Prediction of Fundamental Frequency and Voicing From Mel-Frequency Cepstral Coefficients for Unconstrained Speech Reconstruction
【24h】

Prediction of Fundamental Frequency and Voicing From Mel-Frequency Cepstral Coefficients for Unconstrained Speech Reconstruction

机译:基于Mel倒谱系数的无约束语音重构预测基本频率和发声

获取原文
获取原文并翻译 | 示例

摘要

This work proposes a method for predicting the fundamental frequency and voicing of a frame of speech from its mel-frequency cepstral coefficient (MFCC) vector representation. This information is subsequently used to enable a speech signal to be reconstructed solely from a stream of MFCC vectors and has particular application in distributed speech recognition systems. Prediction is achieved by modeling the joint density of fundamental frequency and MFCCs. This is first modeled using a Gaussian mixture model (GMM) and then extended by using a set of hidden Markov models to link together a series of state-dependent GMMs. Prediction accuracy is measured on unconstrained speech input for both a speaker-dependent system and a speaker-independent system. A fundamental frequency prediction error of 3.06% is obtained on the speaker-dependent system in comparison to 8.27% on the speaker-independent system. On the speaker-dependent system 5.22% of frames have voicing errors compared to 8.82% on the speaker-independent system. Spectrogram analysis of reconstructed speech shows that highly intelligible speech is produced with the quality of the speaker-dependent speech being slightly higher owing to the more accurate fundamental frequency and voicing predictions
机译:这项工作提出了一种方法,用于根据语音帧的梅尔频率倒谱系数(MFCC)矢量表示来预测语音帧的基本频率和发声。该信息随后用于使语音信号能够仅从MFCC矢量流中重建,并且在分布式语音识别系统中具有特殊的应用。通过对基频和MFCC的联合密度建模可以实现预测。首先使用高斯混合模型(GMM)对其进行建模,然后使用一组隐藏的马尔可夫模型进行扩展以将一系列与状态相关的GMM链接在一起。对于说话者相关系统和说话者无关系统,在无约束语音输入下测量预测准确性。与说话者无关的系统上的基本频率预测误差为8.27%,而与说话者无关的系统上的基本频率预测误差为3.06%。在与说话者无关的系统上,5.22%的帧具有发声错误,而在与说话者无关的系统上,则为8.82%。重构语音的频谱分析表明,由于基本频率和发声预测更加准确,因此产生了可理解的语音,与说话者相关的语音质量略高

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号