首页> 外文期刊>Audio, Speech, and Language Processing, IEEE Transactions on >Robust Acoustic Speech Feature Prediction From Noisy Mel-Frequency Cepstral Coefficients
【24h】

Robust Acoustic Speech Feature Prediction From Noisy Mel-Frequency Cepstral Coefficients

机译:基于嘈杂的梅尔频率倒谱系数的鲁棒声学语音特征预测

获取原文
获取原文并翻译 | 示例

摘要

This paper examines the effect of applying noise compensation to acoustic speech feature prediction from noisy mel-frequency cepstral coefficient (MFCC) vectors within a distributed speech recognition architecture. An acoustic speech feature (comprising fundamental frequency, formant frequencies, speech/nonspeech classification, and voicing classification) is predicted from an MFCC vector in a maximum a posteriori (MAP) framework using phoneme-specific or global models of speech. The effect of noise is considered and three different noise compensation methods, that have been successful in robust speech recognition, are integrated within the MAP framework. Experiments show that noise compensation can be applied successfully to prediction with best performance given by a model adaptation method that performs only slightly worse than matched training and testing. Further experiments consider application of the predicted acoustic features to speech reconstruction. A series of human listening tests show that the predicted features are sufficient for speech reconstruction and that noise compensation improves speech quality in noisy conditions.
机译:本文研究了在分布式语音识别体系结构中,从嘈杂的mel频率倒谱系数(MFCC)向量对噪声语音特征预测应用噪声补偿的效果。在最大后验(MAP)框架中,使用特定于音素的语音模型或全局语音模型,根据MFCC向量预测声学语音特征(包含基本频率,共振峰频率,语音/非语音分类和语音分类)。考虑了噪声的影响,在MAP框架中集成了在鲁棒语音识别中成功的三种不同的噪声补偿方法。实验表明,通过模型自适应方法,噪声补偿可以成功地应用于具有最佳性能的预测,该模型自适应方法的性能仅比匹配的训练和测试稍差。进一步的实验考虑了预测的声学特征在语音重建中的应用。一系列的人类听力测试表明,预测的特征足以进行语音重建,并且噪声补偿可以改善嘈杂条件下的语音质量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号