首页> 外文期刊>Audio, Speech, and Language Processing, IEEE Transactions on >Joint Uncertainty Decoding With Predictive Methods for Noise Robust Speech Recognition
【24h】

Joint Uncertainty Decoding With Predictive Methods for Noise Robust Speech Recognition

机译:联合不确定度与预测方法的鲁棒语音识别

获取原文
获取原文并翻译 | 示例

摘要

Model-based noise compensation techniques are a powerful approach to improve speech recognition performance in noisy environments. However, one of the major issues with these schemes is that they are computationally expensive. Though techniques have been proposed to address this problem, they often result in degradations in performance. This paper proposes a new, highly flexible, approach which allows the computational load required for noise compensation to be controlled while maintaining good performance. The scheme applies the improved joint uncertainty decoding with the predictive linear transform framework. The final compensation is implemented as a set of linear transforms of the features, decoupling the computational cost of compensation from the complexity of the recognition system acoustic models. Furthermore, by using linear transforms, changes in the correlations in the feature vector can also be efficiently modeled. The proposed methods can be easily applied in an adaptive training scheme, including discriminative adaptive training. The performance of the approach is compared to a number of standard schemes on Aurora 2 as well as in-car speech recognition tasks. Results indicate that the proposed scheme is an attractive alternative to existing approaches.
机译:基于模型的噪声补偿技术是一种在嘈杂环境中提高语音识别性能的强大方法。但是,这些方案的主要问题之一是它们的计算量很大。尽管已经提出了解决该问题的技术,但是它们经常导致性能下降。本文提出了一种新的,高度灵活的方法,该方法可以在保持良好性能的同时控制噪声补偿所需的计算负荷。该方案将改进的联合不确定性解码与预测线性变换框架一起应用。最终补偿被实现为特征的一组线性变换,从而使补偿的计算成本与识别系统声学模型的复杂性脱钩。此外,通过使用线性变换,还可以有效地对特征向量中的相关性变化进行建模。所提出的方法可以容易地应用于包括判别性自适应训练的自适应训练方案中。将该方法的性能与Aurora 2上的许多标准方案以及车载语音识别任务进行了比较。结果表明,所提出的方案是现有方法的一种有吸引力的替代方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号