首页> 外文期刊>Audio, Speech, and Language Processing, IEEE Transactions on >Spectral and Temporal Periodicity Representations of Rhythm for the Automatic Classification of Music Audio Signal
【24h】

Spectral and Temporal Periodicity Representations of Rhythm for the Automatic Classification of Music Audio Signal

机译:音乐音频信号自动分类的节奏的频谱和时间周期表示

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we study the spectral and temporal periodicity representations that can be used to describe the characteristics of the rhythm of a music audio signal. A continuous-valued energy-function representing the onset positions over time is first extracted from the audio signal. From this function we compute at each time a vector which represents the characteristics of the local rhythm. Four feature sets are studied for this vector. They are derived from the amplitude of the discrete Fourier transform (DFT), the auto-correlation function (ACF), the product of the DFT and the ACF interpolated on a hybrid lag/frequency axis and the concatenated DFT and ACF coefficients. Then the vectors are sampled at some specific frequencies, which represent various ratios of the local tempo. The ability of these periodicity representations to describe the rhythm characteristics of an audio item is evaluated through a classification task. In this, we test the use of the periodicity representations alone, combined with tempo information and combined with a proposed set of rhythm features. The evaluation is performed using annotated and estimated tempo. We show that using such simple periodicity representations allows achieving high recognition rates at least comparable to previously published results.
机译:在本文中,我们研究了可以用于描述音乐音频信号节奏特征的频谱和时间周期性表示。首先从音频信号中提取代表随时间变化的起始位置的连续值能量函数。通过此函数,我们每次都计算一个代表局部节奏特征的向量。针对此向量研究了四个特征集。它们是从离散傅里叶变换(DFT)的幅度,自相关函数(ACF),在混合滞后/频率轴上插值的DFT和ACF的乘积以及串联的DFT和ACF系数得出的。然后,以代表特定速度的各种比率的特定频率对向量进行采样。这些周期性表示形式描述音频项目节奏特征的能力是通过分类任务评估的。在这种情况下,我们单独测试周期性表示的使用,结合速度信息并结合一组拟议的节奏特征。使用带注释的和估计的速度执行评估。我们表明,使用这种简单的周期性表示形式可以实现至少与以前发布的结果相当的高识别率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号