首页> 外文期刊>IEEE transactions on audio, speech and language processing >Temporal Integration for Audio Classification With Application to Musical Instrument Classification
【24h】

Temporal Integration for Audio Classification With Application to Musical Instrument Classification

机译:音频分类的时间整合及其在乐器分类中的应用

获取原文
获取原文并翻译 | 示例

摘要

Nowadays, it appears essential to design automatic indexing tools which provide meaningful and efficient means to describe the musical audio content. There is in fact a growing interest for music information retrieval (MIR) applications amongst which the most popular are related to music similarity retrieval, artist identification, musical genre or instrument recognition. Current MIR-related classification systems usually do not take into account the mid-term temporal properties of the signal (over several frames) and lie on the assumption that the observations of the features in different frames are statistically independent. The aim of this paper is to demonstrate the usefulness of the information carried by the evolution of these characteristics over time. To that purpose, we propose a number of methods for early and late temporal integration and provide an in-depth experimental study on their interest for the task of musical instrument recognition on solo musical phrases. In particular, the impact of the time horizon over which the temporal integration is performed will be assessed both for fixed and variable frame length analysis. Also, a number of proposed alignment kernels will be used for late temporal integration. For all experiments, the results are compared to a state of the art musical instrument recognition system.
机译:如今,设计自动索引工具似乎至关重要,该工具可提供有意义和有效的方式来描述音乐音频内容。实际上,人们对音乐信息检索(MIR)应用程序的兴趣与日俱增,其中最流行的与音乐相似性检索,艺术家识别,音乐流派或乐器识别有关。当前与MIR相关的分类系统通常不考虑信号的中期时间特性(在几个帧上),而是基于不同帧中特征的观察在统计上独立的假设。本文的目的是证明随着时间的推移这些特征的演变所携带的信息的有用性。为此,我们提出了许多用于早期和晚期时间整合的方法,并就其对独奏乐句上的乐器识别任务的兴趣提供了深入的实验研究。特别是,将针对固定和可变帧长分析都评估执行时间积分的时间范围的影响。同样,许多提议的对准核将用于后期时间积分。对于所有实验,将结果与最先进的乐器识别系统进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号