首页> 外文期刊>Audio, Speech, and Language Processing, IEEE Transactions on >A Probabilistic Interaction Model for Multipitch Tracking With Factorial Hidden Markov Models
【24h】

A Probabilistic Interaction Model for Multipitch Tracking With Factorial Hidden Markov Models

机译:基于因子隐马尔可夫模型的多音调跟踪概率交互模型

获取原文
获取原文并翻译 | 示例

摘要

We present a simple and efficient feature modeling approach for tracking the pitch of two simultaneously active speakers. We model the spectrogram features of single speakers using Gaussian mixture models in combination with the minimum description length model selection criterion. To obtain a probabilistic representation for the speech mixture spectrogram features of both speakers, we employ the mixture maximization model (MIXMAX) and, as an alternative, a linear interaction model. A factorial hidden Markov model is applied for tracking pitch over time. This statistical model can be used for applications beyond speech, whenever the interaction between individual sources can be represented as MIXMAX or linear model. For tracking, we use the loopy max-sum algorithm, and provide empirical comparisons to exact methods. Furthermore, we discuss a scheduling mechanism of loopy belief propagation for online tracking. We demonstrate experimental results using Mocha-TIMIT as well as data from the speech separation challenge provided by Cooke We show the excellent performance of the proposed method in comparison to a well known multipitch tracking algorithm based on correlogram features. Using speaker-dependent models, the proposed method improves the accuracy of correct speaker assignment, which is important for single-channel speech separation. In particular, we are able to reduce the overall tracking error by 51% relative for the speaker-dependent case. Moreover, we use the estimated pitch trajectories to perform single-channel source separation, and demonstrate the beneficial effect of correct speaker assignment on speech separation performance.
机译:我们提出了一种简单有效的特征建模方法,用于跟踪两个同时活动的扬声器的音调。我们使用高斯混合模型结合最小描述长度模型选择标准对单个扬声器的频谱图特征进行建模。为了获得两个讲话者的语音混合声谱图特征的概率表示,我们采用了混合最大化模型(MIXMAX)和线性交互模型。应用阶乘隐式马尔可夫模型来跟踪随时间变化的音调。每当单个来源之间的交互可以表示为MIXMAX或线性模型时,该统计模型就可以用于语音以外的应用。对于跟踪,我们使用循环最大和算法,并提供对精确方法的经验比较。此外,我们讨论了用于在线跟踪的循环信念传播的调度机制。我们演示了使用Mocha-TIMIT以及来自Cooke提供的语音分离挑战的数据的实验结果。与基于相关图特征的众所周知的多音高跟踪算法相比,我们展示了所提出方法的出色性能。使用与说话者相关的模型,该方法提高了正确分配说话者的准确性,这对于单通道语音分离非常重要。特别是,对于说话者相关的情况,我们能够将整体跟踪误差降低51%。此外,我们使用估计的音调轨迹执行单通道源分离,并证明正确的扬声器分配对语音分离性能的有益影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号