首页> 外文期刊>Audio, Speech, and Language Processing, IEEE Transactions on >Dirichlet Class Language Models for Speech Recognition
【24h】

Dirichlet Class Language Models for Speech Recognition

机译:用于语音识别的Dirichlet类语言模型

获取原文
获取原文并翻译 | 示例

摘要

Latent Dirichlet allocation (LDA) was successfully developed for document modeling due to its generalization to unseen documents through the latent topic modeling. LDA calculates the probability of a document based on the bag-of-words scheme without considering the order of words. Accordingly, LDA cannot be directly adopted to predict words in speech recognition systems. This work presents a new Dirichlet class language model (DCLM), which projects the sequence of history words onto a latent class space and calculates a marginal likelihood over the uncertainties of classes, which are expressed by Dirichlet priors. A Bayesian class-based language model is established and a variational Bayesian procedure is presented for estimating DCLM parameters. Furthermore, the long-distance class information is continuously updated using the large-span history words and is dynamically incorporated into class mixtures for a cache DCLM. Different language models are experimentally evaluated using the Wall Street Journal (WSJ) corpus. The amount of training data and the size of vocabulary are evaluated. We find that the cache DCLM effectively characterizes the unseen $n$-gram events and stores the class information for long-distance language modeling. This approach outperforms the other class-based and topic-based language models in terms of perplexity and recognition accuracy. The DCLM and cache DCLM achieved relative gain of word error rate by 3% to 5% over the LDA topic-based language model with different sizes of training data .
机译:潜在狄利克雷分配(LDA)已成功开发用于文档建模,因为它通过潜在主题建模可将其推广到看不见的文档中。 LDA在不考虑单词顺序的情况下,基于词袋计划来计算文档的概率。因此,在语音识别系统中不能直接采用LDA来预测单词。这项工作提出了一个新的狄利克雷类语言模型(DCLM),该模型将历史单词的序列投影到一个潜在的类空间上,并计算由狄利克雷特先验表达的类的不确定性的边际可能性。建立了基于贝叶斯类的语言模型,并提出了一种变分贝叶斯程序来估计DCLM参数。此外,使用大跨度历史单词连续更新长距离类别信息,并将其动态地合并到用于高速缓存DCLM的类别混合中。使用《华尔街日报》(WSJ)语料库对不同的语言模型进行了实验评估。评估训练数据的数量和词汇量。我们发现高速缓存DCLM有效地表征了看不见的$ n $ -gram事件,并存储了用于远程语言建模的类信息。就困惑度和识别准确性而言,此方法优于其他基于类和基于主题的语言模型。在不同大小的训练数据的情况下,与基于LDA主题的语言模型相比,DCLM和缓存DCLM的相对词错误率提高了3%至5%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号