首页> 外文期刊>Audio, Speech, and Language Processing, IEEE Transactions on >A Generalized Directional Laplacian Distribution : Estimation, Mixture Models and Audio Source Separation
【24h】

A Generalized Directional Laplacian Distribution : Estimation, Mixture Models and Audio Source Separation

机译:广义定向拉普拉斯分布:估计,混合模型和音频源分离

获取原文
获取原文并翻译 | 示例

摘要

Directional or Circular statistics are pertaining to the analysis and interpretation of directions or rotations. In this work, a novel probability distribution is proposed to model multidimensional sparse directional data. The Generalized Directional Laplacian Distribution (DLD) is a hybrid between the Laplacian distribution and the von Mises-Fisher distribution. The distribution's parameters are estimated using Maximum-Likelihood Estimation over a set of training data points. Mixtures of Directional Laplacian Distributions (MDLD) are also introduced in order to model multiple concentrations of sparse directional data. The author explores the application of the derived DLD mixture model to cluster sound sources that exist in an underdetermined instantaneous sound mixture. The proposed model can solve the general ${Ktimes L~(K< L)}$ underdetermined instantaneous source separation problem, offering a fast and stable solution.
机译:方向或循环统计与方向或旋转的分析和解释有关。在这项工作中,提出了一种新颖的概率分布来建模多维稀疏方向数据。广义定向拉普拉斯分布(DLD)是拉普拉斯分布与von Mises-Fisher分布之间的混合。使用一组训练数据点上的最大似然估计来估计分布的参数。还引入了方向拉普拉斯分布(MDLD)的混合物,以便对稀疏方向数据的多个浓度进行建模。作者探索了导出的DLD混合模型在群集未确定的瞬时声音混合中存在的声源中的应用。所提出的模型可以解决一般的$ {Ktimes L〜(K

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号