首页> 外文期刊>Audio, Speech, and Language Processing, IEEE Transactions on >A Graphical Representation and Dissimilarity Measure for Basic Everyday Sound Events
【24h】

A Graphical Representation and Dissimilarity Measure for Basic Everyday Sound Events

机译:基本日常声音事件的图形表示和差异度量

获取原文
获取原文并翻译 | 示例

摘要

Studies of Gaver (W. W. Gaver, “How do we hear in the world? Explorations in ecological acoustics,” Ecological Psychology, 1993) revealed that humans categorize everyday sounds considering the processes that have generated them: He defined these categories in a taxonomy according to the aggregate states of the involved materials (solid, liquid, gas) and the physical nature of the sound generating interaction such as deformation, friction, etc., for solids. We exemplified this taxonomy in an everyday sound database that contains recordings of basic isolated sound events of these categories. We used a sparse method to represent and to visualize these sound events. This representation relies on a sparse decomposition of sounds into atomic filter functions in the time-frequency domain. The filter functions maximally correlated with a given sound are selected automatically to perform the decomposition. The obtained sparse point pattern depicts the skeleton of the given sound. The visualization of these point patterns revealed that acoustically similar sounds have similar point patterns. To detect these similarities, we defined a novel dissimilarity function by considering these point patterns as 3-D point graphs and applied a graph matching algorithm, which assigns the points of one sound to the points of the other sound. This novel dissimilarity measure is used in combination with a kernel machine for the classification experiments, yielding an average accuracy of 95% in one versus one discrimination tasks.
机译:Gaver的研究(WW Gaver,“我们如何在世界上听到?对生态声学的探索”,Economic Psychology,1993年)显示,人类会根据产生声音的过程对日常声音进行分类:他根据分类将这些类别定义为所涉及的材料(固体,液体,气体)的聚合状态以及固体产生声音的相互作用(例如变形,摩擦等)的物理性质。我们在日常声音数据库中以这种分类法为例,该数据库包含这些类别的基本孤立声音事件的记录。我们使用一种稀疏方法来表示和可视化这些声音事件。这种表示依赖于在时频域中将声音稀疏分解为原子滤波函数。自动选择与给定声音最大关联的滤波器功能以执行分解。所获得的稀疏点模式描绘了给定声音的骨架。这些点模式的可视化表明,声学上相似的声音具有相似的点模式。为了检测这些相似性,我们通过将这些点模式视为3-D点图来定义一个新颖的相异度函数,并应用了图匹配算法,该算法将一种声音的点分配给另一种声音的点。这种新颖的差异度测量方法与内核机结合用于分类实验,在一个识别任务与一个识别任务之间的平均准确度为95%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号