首页> 外文期刊>Audio, Speech, and Language Processing, IEEE Transactions on >Minimum Kullback–Leibler Divergence Parameter Generation for HMM-Based Speech Synthesis
【24h】

Minimum Kullback–Leibler Divergence Parameter Generation for HMM-Based Speech Synthesis

机译:基于HMM的语音合成的最小Kullback-Leibler发散参数生成

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a parameter generation method for hidden Markov model (HMM)-based statistical parametric speech synthesis that uses a similarity measure for probability distributions. In contrast to conventional maximum output probability parameter generation (MOPPG), the method we propose derives a parameter generation criterion from the distribution characteristics of the generated acoustic features. Kullback-Leibler (KL) divergence between the sentence HMM used for parameter generation and the HMM estimated from the generated features is calculated by upper bound approximation. During parameter generation, this KL divergence is minimized either by optimizing the generated acoustic parameters directly or by applying a linear transform to the MOPPG outputs. Our experiments show both these approaches are effective for alleviating over-smoothing in the generated spectral features and for improving the naturalness of synthetic speech. Compared with the direct optimization approach, which is susceptible to over-fitting, the feature transform approach gives better performance. In order to reduce the computational complexity of transform estimation, an offline training method is further developed to estimate a global transform under the minimum KL divergence criterion for the training set. Experimental results show that this global transform is as effective as the transform estimated for each sentence at synthesis stage.
机译:本文提出了一种基于隐马尔可夫模型(HMM)的统计参数语音合成参数生成方法,该方法使用相似性度量进行概率分布。与传统的最大输出概率参数生成(MOPPG)相比,我们提出的方法从生成的声学特征的分布特征中得出参数生成准则。通过上限近似来计算用于参数生成的句子HMM与根据生成的特征估计的HMM之间的Kullback-Leibler(KL)差异。在参数生成期间,可通过直接优化生成的声学参数或将线性变换应用于MOPPG输出来最小化KL散度。我们的实验表明,这两种方法均可有效缓解生成的频谱特征中的过度平滑现象,并改善合成语音的自然性。与容易过度拟合的直接优化方法相比,特征变换方法具有更好的性能。为了降低变换估计的计算复杂度,进一步开发了一种离线训练方法来根据训练集的最小KL散度准则估计全局变换。实验结果表明,这种全局变换与合成阶段对每个句子估计的变换一样有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号